generated from dhairya/scenario_template
System save at 13/10/2024 23:47 by user_client2024
This commit is contained in:
parent
59fcedf16e
commit
9a36694f7f
@ -2,29 +2,92 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 1,
|
||||
"id": "90c70e46-71a0-44a6-8090-f53aad3193c3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Query start time: 2024-10-13 18:13:45.509982\n",
|
||||
"Query end time: 2024-10-13 18:13:45.944136\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>START_DATE_TIME</th>\n",
|
||||
" <th>END_DATE_TIME</th>\n",
|
||||
" <th>FOCAL_ID</th>\n",
|
||||
" <th>MIN_PRICE</th>\n",
|
||||
" <th>MAX_PRICE</th>\n",
|
||||
" <th>PRICE_CHANGE (%)</th>\n",
|
||||
" <th>PARTICIPANT_VOLUME</th>\n",
|
||||
" <th>TOTAL_VOLUME</th>\n",
|
||||
" <th>VOLUME (%)</th>\n",
|
||||
" <th>PARTICIPANT_VOLUME_PCT</th>\n",
|
||||
" <th>Segment</th>\n",
|
||||
" <th>SAR_FLAG</th>\n",
|
||||
" <th>Risk</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
"Empty DataFrame\n",
|
||||
"Columns: [START_DATE_TIME, END_DATE_TIME, FOCAL_ID, MIN_PRICE, MAX_PRICE, PRICE_CHANGE (%), PARTICIPANT_VOLUME, TOTAL_VOLUME, VOLUME (%), PARTICIPANT_VOLUME_PCT, Segment, SAR_FLAG, Risk]\n",
|
||||
"Index: []"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from datetime import datetime\n",
|
||||
"import pandas as pd\n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"\n",
|
||||
"# SQL query to aggregate trade data and compute metrics\n",
|
||||
"query = \"\"\"\n",
|
||||
"# SQL query to aggregate trade data and compute metrics using ROWS with optimizations\n",
|
||||
"query_template = \"\"\"\n",
|
||||
"WITH trade_data AS (\n",
|
||||
" SELECT \n",
|
||||
" trader_id,\n",
|
||||
" date_time,\n",
|
||||
" trade_price,\n",
|
||||
" trade_volume,\n",
|
||||
" -- Create a time window for each trade\n",
|
||||
" date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
|
||||
" date_time AS window_end\n",
|
||||
" -- Create a time window for each trade by subtracting time_window_s seconds\n",
|
||||
" date_add('second', -{time_window_s}, date_time) AS window_start,\n",
|
||||
" date_time AS window_end,\n",
|
||||
" trade_side\n",
|
||||
" FROM {trade_10m_v3}\n",
|
||||
" WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data\n",
|
||||
" LIMIT 10000 -- Process only a subset of records for testing\n",
|
||||
"),\n",
|
||||
"\n",
|
||||
"aggregated_trades AS (\n",
|
||||
@ -32,21 +95,21 @@
|
||||
" td.trader_id,\n",
|
||||
" td.window_start,\n",
|
||||
" td.window_end,\n",
|
||||
" SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
|
||||
" SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END) \n",
|
||||
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
||||
" SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
||||
" SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END) \n",
|
||||
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
||||
" SUM(trade_volume) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
||||
" MAX(trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
||||
" MIN(trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
||||
" SUM(td.trade_volume) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
||||
" MAX(td.trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
||||
" MIN(td.trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
||||
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
||||
" FROM {trade_10m_v3} td\n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
||||
" FROM trade_data td\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"SELECT \n",
|
||||
@ -68,16 +131,18 @@
|
||||
"\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" validation_window = kwargs.get('validation_window')\n",
|
||||
" time_window_s = int(validation_window / 1000)\n",
|
||||
" time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds\n",
|
||||
" \n",
|
||||
" query_start_time = datetime.now()\n",
|
||||
" print(\"Query start time:\", query_start_time)\n",
|
||||
"\n",
|
||||
" row_list = self.seq.execute_raw(query.format(\n",
|
||||
" # Execute the optimized query using a time window and limit\n",
|
||||
" row_list = self.seq.execute_raw(query_template.format(\n",
|
||||
" trade_10m_v3=\"trade_10m_v3\",\n",
|
||||
" time_window_s=time_window_s\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" # Define the columns for the resulting DataFrame\n",
|
||||
" cols = [\n",
|
||||
" 'START_DATE_TIME',\n",
|
||||
" 'END_DATE_TIME',\n",
|
||||
@ -90,16 +155,25 @@
|
||||
" 'VOLUME (%)',\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" # Create DataFrame from query results\n",
|
||||
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
|
||||
" \n",
|
||||
" # Calculate the participant's volume percentage\n",
|
||||
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
|
||||
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
||||
"\n",
|
||||
" # Adding additional columns\n",
|
||||
" # Add additional columns to the DataFrame\n",
|
||||
" final_scenario_df['Segment'] = 'Default'\n",
|
||||
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
||||
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
||||
"\n",
|
||||
" return final_scenario_df\n"
|
||||
" print(\"Query end time:\", datetime.now())\n",
|
||||
" return final_scenario_df\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Instantiate and execute logic\n",
|
||||
"scenario = Scenario()\n",
|
||||
"scenario.logic(validation_window=1000)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -122,8 +196,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#scenario = Scenario()\n",
|
||||
"#scenario.logic()"
|
||||
"# Instantiate and execute logic\n",
|
||||
"scenario = Scenario()\n",
|
||||
"scenario.logic(validation_window=1000)"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
136
main.ipynb
136
main.ipynb
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 3,
|
||||
"id": "90c70e46-71a0-44a6-8090-f53aad3193c3",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@ -13,18 +13,21 @@
|
||||
"import pandas as pd\n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"\n",
|
||||
"# SQL query to aggregate trade data and compute metrics\n",
|
||||
"query = \"\"\"\n",
|
||||
"# SQL query to aggregate trade data and compute metrics using ROWS with optimizations\n",
|
||||
"query_template = \"\"\"\n",
|
||||
"WITH trade_data AS (\n",
|
||||
" SELECT \n",
|
||||
" trader_id,\n",
|
||||
" date_time,\n",
|
||||
" trade_price,\n",
|
||||
" trade_volume,\n",
|
||||
" -- Create a time window for each trade\n",
|
||||
" date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
|
||||
" date_time AS window_end\n",
|
||||
" -- Create a time window for each trade by subtracting time_window_s seconds\n",
|
||||
" date_add('second', -{time_window_s}, date_time) AS window_start,\n",
|
||||
" date_time AS window_end,\n",
|
||||
" trade_side\n",
|
||||
" FROM {trade_10m_v3}\n",
|
||||
" WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data\n",
|
||||
" LIMIT 10000 -- Process only a subset of records for testing\n",
|
||||
"),\n",
|
||||
"\n",
|
||||
"aggregated_trades AS (\n",
|
||||
@ -32,21 +35,21 @@
|
||||
" td.trader_id,\n",
|
||||
" td.window_start,\n",
|
||||
" td.window_end,\n",
|
||||
" SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
|
||||
" SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END) \n",
|
||||
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
||||
" SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
||||
" SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END) \n",
|
||||
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
||||
" SUM(trade_volume) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
||||
" MAX(trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
||||
" MIN(trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
||||
" SUM(td.trade_volume) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
||||
" MAX(td.trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
||||
" MIN(td.trade_price) OVER (ORDER BY td.date_time \n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
||||
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
||||
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
||||
" FROM {trade_10m_v3} td\n",
|
||||
" ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
||||
" FROM trade_data td\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"SELECT \n",
|
||||
@ -68,16 +71,18 @@
|
||||
"\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" validation_window = kwargs.get('validation_window')\n",
|
||||
" time_window_s = int(validation_window / 1000)\n",
|
||||
" time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds\n",
|
||||
" \n",
|
||||
" query_start_time = datetime.now()\n",
|
||||
" print(\"Query start time:\", query_start_time)\n",
|
||||
"\n",
|
||||
" row_list = self.seq.execute_raw(query.format(\n",
|
||||
" # Execute the optimized query using a time window and limit\n",
|
||||
" row_list = self.seq.execute_raw(query_template.format(\n",
|
||||
" trade_10m_v3=\"trade_10m_v3\",\n",
|
||||
" time_window_s=time_window_s\n",
|
||||
" ))\n",
|
||||
"\n",
|
||||
" # Define the columns for the resulting DataFrame\n",
|
||||
" cols = [\n",
|
||||
" 'START_DATE_TIME',\n",
|
||||
" 'END_DATE_TIME',\n",
|
||||
@ -90,41 +95,104 @@
|
||||
" 'VOLUME (%)',\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" # Create DataFrame from query results\n",
|
||||
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
|
||||
" \n",
|
||||
" # Calculate the participant's volume percentage\n",
|
||||
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
|
||||
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
||||
"\n",
|
||||
" # Adding additional columns\n",
|
||||
" # Add additional columns to the DataFrame\n",
|
||||
" final_scenario_df['Segment'] = 'Default'\n",
|
||||
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
||||
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
||||
"\n",
|
||||
" return final_scenario_df\n"
|
||||
" print(\"Query end time:\", datetime.now())\n",
|
||||
" return final_scenario_df\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 2,
|
||||
"id": "caee5554-5254-4388-bf24-029281d77890",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "TypeError",
|
||||
"evalue": "unsupported operand type(s) for /: 'NoneType' and 'int'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m scenario \u001b[38;5;241m=\u001b[39m Scenario()\n\u001b[0;32m----> 2\u001b[0m \u001b[43mscenario\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlogic\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"Cell \u001b[0;32mIn[4], line 60\u001b[0m, in \u001b[0;36mScenario.logic\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mlogic\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 59\u001b[0m validation_window \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalidation_window\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 60\u001b[0m time_window_s \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(\u001b[43mvalidation_window\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m)\n\u001b[1;32m 62\u001b[0m query_start_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery start time:\u001b[39m\u001b[38;5;124m\"\u001b[39m, query_start_time)\n",
|
||||
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for /: 'NoneType' and 'int'"
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Query start time: 2024-10-13 18:14:29.793521\n",
|
||||
"Query end time: 2024-10-13 18:14:29.933772\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>START_DATE_TIME</th>\n",
|
||||
" <th>END_DATE_TIME</th>\n",
|
||||
" <th>FOCAL_ID</th>\n",
|
||||
" <th>MIN_PRICE</th>\n",
|
||||
" <th>MAX_PRICE</th>\n",
|
||||
" <th>PRICE_CHANGE (%)</th>\n",
|
||||
" <th>PARTICIPANT_VOLUME</th>\n",
|
||||
" <th>TOTAL_VOLUME</th>\n",
|
||||
" <th>VOLUME (%)</th>\n",
|
||||
" <th>PARTICIPANT_VOLUME_PCT</th>\n",
|
||||
" <th>Segment</th>\n",
|
||||
" <th>SAR_FLAG</th>\n",
|
||||
" <th>Risk</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
"Empty DataFrame\n",
|
||||
"Columns: [START_DATE_TIME, END_DATE_TIME, FOCAL_ID, MIN_PRICE, MAX_PRICE, PRICE_CHANGE (%), PARTICIPANT_VOLUME, TOTAL_VOLUME, VOLUME (%), PARTICIPANT_VOLUME_PCT, Segment, SAR_FLAG, Risk]\n",
|
||||
"Index: []"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#scenario = Scenario()\n",
|
||||
"#scenario.logic()"
|
||||
"# Instantiate and execute logic\n",
|
||||
"scenario = Scenario()\n",
|
||||
"scenario.logic(validation_window=1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1feaf267-88d1-41b8-a8b9-f150b7ff16cd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
67
main.py
67
main.py
@ -1,25 +1,28 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[4]:
|
||||
# In[3]:
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
import pandas as pd
|
||||
from tms_data_interface import SQLQueryInterface
|
||||
|
||||
# SQL query to aggregate trade data and compute metrics
|
||||
query = """
|
||||
# SQL query to aggregate trade data and compute metrics using ROWS with optimizations
|
||||
query_template = """
|
||||
WITH trade_data AS (
|
||||
SELECT
|
||||
trader_id,
|
||||
date_time,
|
||||
trade_price,
|
||||
trade_volume,
|
||||
-- Create a time window for each trade
|
||||
date_time - INTERVAL '1 second' * {time_window_s} AS window_start,
|
||||
date_time AS window_end
|
||||
-- Create a time window for each trade by subtracting time_window_s seconds
|
||||
date_add('second', -{time_window_s}, date_time) AS window_start,
|
||||
date_time AS window_end,
|
||||
trade_side
|
||||
FROM {trade_10m_v3}
|
||||
WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data
|
||||
LIMIT 10000 -- Process only a subset of records for testing
|
||||
),
|
||||
|
||||
aggregated_trades AS (
|
||||
@ -27,21 +30,21 @@ aggregated_trades AS (
|
||||
td.trader_id,
|
||||
td.window_start,
|
||||
td.window_end,
|
||||
SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END)
|
||||
SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END)
|
||||
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,
|
||||
SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END)
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,
|
||||
SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END)
|
||||
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,
|
||||
SUM(trade_volume) OVER (ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,
|
||||
MAX(trade_price) OVER (ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,
|
||||
MIN(trade_price) OVER (ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,
|
||||
SUM(td.trade_volume) OVER (ORDER BY td.date_time
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,
|
||||
MAX(td.trade_price) OVER (ORDER BY td.date_time
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,
|
||||
MIN(td.trade_price) OVER (ORDER BY td.date_time
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,
|
||||
COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time
|
||||
RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades
|
||||
FROM {trade_10m_v3} td
|
||||
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades
|
||||
FROM trade_data td
|
||||
)
|
||||
|
||||
SELECT
|
||||
@ -63,16 +66,18 @@ class Scenario:
|
||||
|
||||
def logic(self, **kwargs):
|
||||
validation_window = kwargs.get('validation_window')
|
||||
time_window_s = int(validation_window / 1000)
|
||||
time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds
|
||||
|
||||
query_start_time = datetime.now()
|
||||
print("Query start time:", query_start_time)
|
||||
|
||||
row_list = self.seq.execute_raw(query.format(
|
||||
# Execute the optimized query using a time window and limit
|
||||
row_list = self.seq.execute_raw(query_template.format(
|
||||
trade_10m_v3="trade_10m_v3",
|
||||
time_window_s=time_window_s
|
||||
))
|
||||
|
||||
# Define the columns for the resulting DataFrame
|
||||
cols = [
|
||||
'START_DATE_TIME',
|
||||
'END_DATE_TIME',
|
||||
@ -85,21 +90,35 @@ class Scenario:
|
||||
'VOLUME (%)',
|
||||
]
|
||||
|
||||
# Create DataFrame from query results
|
||||
final_scenario_df = pd.DataFrame(row_list, columns=cols)
|
||||
|
||||
# Calculate the participant's volume percentage
|
||||
final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \
|
||||
final_scenario_df['TOTAL_VOLUME'] * 100
|
||||
|
||||
# Adding additional columns
|
||||
# Add additional columns to the DataFrame
|
||||
final_scenario_df['Segment'] = 'Default'
|
||||
final_scenario_df['SAR_FLAG'] = 'N'
|
||||
final_scenario_df['Risk'] = 'Low Risk'
|
||||
|
||||
print("Query end time:", datetime.now())
|
||||
return final_scenario_df
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
#scenario = Scenario()
|
||||
#scenario.logic()
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
# Instantiate and execute logic
|
||||
scenario = Scenario()
|
||||
scenario.logic(validation_window=1000)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user