diff --git a/.ipynb_checkpoints/main-checkpoint.ipynb b/.ipynb_checkpoints/main-checkpoint.ipynb
index cf81d87..5098552 100644
--- a/.ipynb_checkpoints/main-checkpoint.ipynb
+++ b/.ipynb_checkpoints/main-checkpoint.ipynb
@@ -2,29 +2,92 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 1,
"id": "90c70e46-71a0-44a6-8090-f53aad3193c3",
"metadata": {
"tags": []
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Query start time: 2024-10-13 18:13:45.509982\n",
+ "Query end time: 2024-10-13 18:13:45.944136\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " START_DATE_TIME | \n",
+ " END_DATE_TIME | \n",
+ " FOCAL_ID | \n",
+ " MIN_PRICE | \n",
+ " MAX_PRICE | \n",
+ " PRICE_CHANGE (%) | \n",
+ " PARTICIPANT_VOLUME | \n",
+ " TOTAL_VOLUME | \n",
+ " VOLUME (%) | \n",
+ " PARTICIPANT_VOLUME_PCT | \n",
+ " Segment | \n",
+ " SAR_FLAG | \n",
+ " Risk | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [START_DATE_TIME, END_DATE_TIME, FOCAL_ID, MIN_PRICE, MAX_PRICE, PRICE_CHANGE (%), PARTICIPANT_VOLUME, TOTAL_VOLUME, VOLUME (%), PARTICIPANT_VOLUME_PCT, Segment, SAR_FLAG, Risk]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"from datetime import datetime\n",
"import pandas as pd\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
- "# SQL query to aggregate trade data and compute metrics\n",
- "query = \"\"\"\n",
+ "# SQL query to aggregate trade data and compute metrics using ROWS with optimizations\n",
+ "query_template = \"\"\"\n",
"WITH trade_data AS (\n",
" SELECT \n",
" trader_id,\n",
" date_time,\n",
" trade_price,\n",
" trade_volume,\n",
- " -- Create a time window for each trade\n",
- " date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
- " date_time AS window_end\n",
+ " -- Create a time window for each trade by subtracting time_window_s seconds\n",
+ " date_add('second', -{time_window_s}, date_time) AS window_start,\n",
+ " date_time AS window_end,\n",
+ " trade_side\n",
" FROM {trade_10m_v3}\n",
+ " WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data\n",
+ " LIMIT 10000 -- Process only a subset of records for testing\n",
"),\n",
"\n",
"aggregated_trades AS (\n",
@@ -32,21 +95,21 @@
" td.trader_id,\n",
" td.window_start,\n",
" td.window_end,\n",
- " SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
+ " SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END) \n",
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
- " SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,\n",
+ " SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END) \n",
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
- " SUM(trade_volume) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
- " MAX(trade_price) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
- " MIN(trade_price) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,\n",
+ " SUM(td.trade_volume) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,\n",
+ " MAX(td.trade_price) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,\n",
+ " MIN(td.trade_price) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,\n",
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
- " FROM {trade_10m_v3} td\n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades\n",
+ " FROM trade_data td\n",
")\n",
"\n",
"SELECT \n",
@@ -68,16 +131,18 @@
"\n",
" def logic(self, **kwargs):\n",
" validation_window = kwargs.get('validation_window')\n",
- " time_window_s = int(validation_window / 1000)\n",
+ " time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds\n",
" \n",
" query_start_time = datetime.now()\n",
" print(\"Query start time:\", query_start_time)\n",
"\n",
- " row_list = self.seq.execute_raw(query.format(\n",
+ " # Execute the optimized query using a time window and limit\n",
+ " row_list = self.seq.execute_raw(query_template.format(\n",
" trade_10m_v3=\"trade_10m_v3\",\n",
" time_window_s=time_window_s\n",
" ))\n",
"\n",
+ " # Define the columns for the resulting DataFrame\n",
" cols = [\n",
" 'START_DATE_TIME',\n",
" 'END_DATE_TIME',\n",
@@ -90,16 +155,25 @@
" 'VOLUME (%)',\n",
" ]\n",
"\n",
+ " # Create DataFrame from query results\n",
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
+ " \n",
+ " # Calculate the participant's volume percentage\n",
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
"\n",
- " # Adding additional columns\n",
+ " # Add additional columns to the DataFrame\n",
" final_scenario_df['Segment'] = 'Default'\n",
" final_scenario_df['SAR_FLAG'] = 'N'\n",
" final_scenario_df['Risk'] = 'Low Risk'\n",
"\n",
- " return final_scenario_df\n"
+ " print(\"Query end time:\", datetime.now())\n",
+ " return final_scenario_df\n",
+ "\n",
+ "\n",
+ "# Instantiate and execute logic\n",
+ "scenario = Scenario()\n",
+ "scenario.logic(validation_window=1000)\n"
]
},
{
@@ -122,8 +196,9 @@
}
],
"source": [
- "#scenario = Scenario()\n",
- "#scenario.logic()"
+ "# Instantiate and execute logic\n",
+ "scenario = Scenario()\n",
+ "scenario.logic(validation_window=1000)"
]
}
],
diff --git a/main.ipynb b/main.ipynb
index cf81d87..db3c9d0 100644
--- a/main.ipynb
+++ b/main.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"id": "90c70e46-71a0-44a6-8090-f53aad3193c3",
"metadata": {
"tags": []
@@ -13,18 +13,21 @@
"import pandas as pd\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
- "# SQL query to aggregate trade data and compute metrics\n",
- "query = \"\"\"\n",
+ "# SQL query to aggregate trade data and compute metrics using ROWS with optimizations\n",
+ "query_template = \"\"\"\n",
"WITH trade_data AS (\n",
" SELECT \n",
" trader_id,\n",
" date_time,\n",
" trade_price,\n",
" trade_volume,\n",
- " -- Create a time window for each trade\n",
- " date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
- " date_time AS window_end\n",
+ " -- Create a time window for each trade by subtracting time_window_s seconds\n",
+ " date_add('second', -{time_window_s}, date_time) AS window_start,\n",
+ " date_time AS window_end,\n",
+ " trade_side\n",
" FROM {trade_10m_v3}\n",
+ " WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data\n",
+ " LIMIT 10000 -- Process only a subset of records for testing\n",
"),\n",
"\n",
"aggregated_trades AS (\n",
@@ -32,21 +35,21 @@
" td.trader_id,\n",
" td.window_start,\n",
" td.window_end,\n",
- " SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
+ " SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END) \n",
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
- " SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,\n",
+ " SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END) \n",
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
- " SUM(trade_volume) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
- " MAX(trade_price) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
- " MIN(trade_price) OVER (ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,\n",
+ " SUM(td.trade_volume) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,\n",
+ " MAX(td.trade_price) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,\n",
+ " MIN(td.trade_price) OVER (ORDER BY td.date_time \n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,\n",
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
- " RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
- " FROM {trade_10m_v3} td\n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades\n",
+ " FROM trade_data td\n",
")\n",
"\n",
"SELECT \n",
@@ -68,16 +71,18 @@
"\n",
" def logic(self, **kwargs):\n",
" validation_window = kwargs.get('validation_window')\n",
- " time_window_s = int(validation_window / 1000)\n",
+ " time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds\n",
" \n",
" query_start_time = datetime.now()\n",
" print(\"Query start time:\", query_start_time)\n",
"\n",
- " row_list = self.seq.execute_raw(query.format(\n",
+ " # Execute the optimized query using a time window and limit\n",
+ " row_list = self.seq.execute_raw(query_template.format(\n",
" trade_10m_v3=\"trade_10m_v3\",\n",
" time_window_s=time_window_s\n",
" ))\n",
"\n",
+ " # Define the columns for the resulting DataFrame\n",
" cols = [\n",
" 'START_DATE_TIME',\n",
" 'END_DATE_TIME',\n",
@@ -90,41 +95,104 @@
" 'VOLUME (%)',\n",
" ]\n",
"\n",
+ " # Create DataFrame from query results\n",
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
+ " \n",
+ " # Calculate the participant's volume percentage\n",
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
"\n",
- " # Adding additional columns\n",
+ " # Add additional columns to the DataFrame\n",
" final_scenario_df['Segment'] = 'Default'\n",
" final_scenario_df['SAR_FLAG'] = 'N'\n",
" final_scenario_df['Risk'] = 'Low Risk'\n",
"\n",
- " return final_scenario_df\n"
+ " print(\"Query end time:\", datetime.now())\n",
+ " return final_scenario_df\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 2,
"id": "caee5554-5254-4388-bf24-029281d77890",
"metadata": {},
"outputs": [
{
- "ename": "TypeError",
- "evalue": "unsupported operand type(s) for /: 'NoneType' and 'int'",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m scenario \u001b[38;5;241m=\u001b[39m Scenario()\n\u001b[0;32m----> 2\u001b[0m \u001b[43mscenario\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlogic\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
- "Cell \u001b[0;32mIn[4], line 60\u001b[0m, in \u001b[0;36mScenario.logic\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mlogic\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 59\u001b[0m validation_window \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalidation_window\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 60\u001b[0m time_window_s \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mint\u001b[39m(\u001b[43mvalidation_window\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m)\n\u001b[1;32m 62\u001b[0m query_start_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mQuery start time:\u001b[39m\u001b[38;5;124m\"\u001b[39m, query_start_time)\n",
- "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for /: 'NoneType' and 'int'"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Query start time: 2024-10-13 18:14:29.793521\n",
+ "Query end time: 2024-10-13 18:14:29.933772\n"
]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " START_DATE_TIME | \n",
+ " END_DATE_TIME | \n",
+ " FOCAL_ID | \n",
+ " MIN_PRICE | \n",
+ " MAX_PRICE | \n",
+ " PRICE_CHANGE (%) | \n",
+ " PARTICIPANT_VOLUME | \n",
+ " TOTAL_VOLUME | \n",
+ " VOLUME (%) | \n",
+ " PARTICIPANT_VOLUME_PCT | \n",
+ " Segment | \n",
+ " SAR_FLAG | \n",
+ " Risk | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [START_DATE_TIME, END_DATE_TIME, FOCAL_ID, MIN_PRICE, MAX_PRICE, PRICE_CHANGE (%), PARTICIPANT_VOLUME, TOTAL_VOLUME, VOLUME (%), PARTICIPANT_VOLUME_PCT, Segment, SAR_FLAG, Risk]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "#scenario = Scenario()\n",
- "#scenario.logic()"
+ "# Instantiate and execute logic\n",
+ "scenario = Scenario()\n",
+ "scenario.logic(validation_window=1000)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1feaf267-88d1-41b8-a8b9-f150b7ff16cd",
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
diff --git a/main.py b/main.py
index 068be16..621c750 100644
--- a/main.py
+++ b/main.py
@@ -1,25 +1,28 @@
#!/usr/bin/env python
# coding: utf-8
-# In[4]:
+# In[3]:
from datetime import datetime
import pandas as pd
from tms_data_interface import SQLQueryInterface
-# SQL query to aggregate trade data and compute metrics
-query = """
+# SQL query to aggregate trade data and compute metrics using ROWS with optimizations
+query_template = """
WITH trade_data AS (
SELECT
trader_id,
date_time,
trade_price,
trade_volume,
- -- Create a time window for each trade
- date_time - INTERVAL '1 second' * {time_window_s} AS window_start,
- date_time AS window_end
+ -- Create a time window for each trade by subtracting time_window_s seconds
+ date_add('second', -{time_window_s}, date_time) AS window_start,
+ date_time AS window_end,
+ trade_side
FROM {trade_10m_v3}
+ WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data
+ LIMIT 10000 -- Process only a subset of records for testing
),
aggregated_trades AS (
@@ -27,21 +30,21 @@ aggregated_trades AS (
td.trader_id,
td.window_start,
td.window_end,
- SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END)
+ SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END)
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,
- SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END)
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,
+ SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END)
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,
- SUM(trade_volume) OVER (ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,
- MAX(trade_price) OVER (ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,
- MIN(trade_price) OVER (ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,
+ SUM(td.trade_volume) OVER (ORDER BY td.date_time
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,
+ MAX(td.trade_price) OVER (ORDER BY td.date_time
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,
+ MIN(td.trade_price) OVER (ORDER BY td.date_time
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,
COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time
- RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades
- FROM {trade_10m_v3} td
+ ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades
+ FROM trade_data td
)
SELECT
@@ -63,16 +66,18 @@ class Scenario:
def logic(self, **kwargs):
validation_window = kwargs.get('validation_window')
- time_window_s = int(validation_window / 1000)
+ time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds
query_start_time = datetime.now()
print("Query start time:", query_start_time)
- row_list = self.seq.execute_raw(query.format(
+ # Execute the optimized query using a time window and limit
+ row_list = self.seq.execute_raw(query_template.format(
trade_10m_v3="trade_10m_v3",
time_window_s=time_window_s
))
+ # Define the columns for the resulting DataFrame
cols = [
'START_DATE_TIME',
'END_DATE_TIME',
@@ -85,21 +90,35 @@ class Scenario:
'VOLUME (%)',
]
+ # Create DataFrame from query results
final_scenario_df = pd.DataFrame(row_list, columns=cols)
+
+ # Calculate the participant's volume percentage
final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \
final_scenario_df['TOTAL_VOLUME'] * 100
- # Adding additional columns
+ # Add additional columns to the DataFrame
final_scenario_df['Segment'] = 'Default'
final_scenario_df['SAR_FLAG'] = 'N'
final_scenario_df['Risk'] = 'Low Risk'
+ print("Query end time:", datetime.now())
return final_scenario_df
-# In[6]:
-#scenario = Scenario()
-#scenario.logic()
+
+# In[2]:
+
+
+# Instantiate and execute logic
+scenario = Scenario()
+scenario.logic(validation_window=1000)
+
+
+# In[ ]:
+
+
+