generated from dhairya/scenario_template
System save at 07/10/2024 12:16 by yati
This commit is contained in:
parent
95ca092578
commit
495cc8eb00
139
.ipynb_checkpoints/main-checkpoint.ipynb
Normal file
139
.ipynb_checkpoints/main-checkpoint.ipynb
Normal file
@ -0,0 +1,139 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"import pandas as pd\n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
" \n",
|
||||
"query = \"\"\"\n",
|
||||
"WITH time_windows AS (\n",
|
||||
" SELECT\n",
|
||||
" -- End time is the current trade time\n",
|
||||
" date_time AS end_time,\n",
|
||||
" \n",
|
||||
" -- Subtract seconds from the end_time using date_add() with negative integer interval\n",
|
||||
" date_add('second', -{time_window_s}, date_time) AS start_time,\n",
|
||||
" \n",
|
||||
" -- Trade details\n",
|
||||
" trade_price,\n",
|
||||
" trade_volume,\n",
|
||||
" trader_id,\n",
|
||||
" \n",
|
||||
" -- Calculate minimum price within the time window\n",
|
||||
" MIN(trade_price) OVER (\n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS min_price,\n",
|
||||
" \n",
|
||||
" -- Calculate maximum price within the time window\n",
|
||||
" MAX(trade_price) OVER (\n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS max_price,\n",
|
||||
" \n",
|
||||
" -- Calculate total trade volume within the time window\n",
|
||||
" SUM(trade_volume) OVER ( \n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS total_volume,\n",
|
||||
" \n",
|
||||
" -- Calculate participant's trade volume within the time window\n",
|
||||
" SUM(CASE WHEN trader_id = trader_id THEN trade_volume ELSE 0 END) OVER (\n",
|
||||
" PARTITION BY trader_id \n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS participant_volume\n",
|
||||
" FROM\n",
|
||||
" {trade_data_1b}\n",
|
||||
")\n",
|
||||
"SELECT\n",
|
||||
" -- Select the time window details\n",
|
||||
" start_time,\n",
|
||||
" end_time,\n",
|
||||
" \n",
|
||||
" -- Select the participant (trader) ID\n",
|
||||
" trader_id AS \"Participant\",\n",
|
||||
" \n",
|
||||
" -- Select the calculated min and max prices\n",
|
||||
" min_price,\n",
|
||||
" max_price,\n",
|
||||
" \n",
|
||||
" -- Calculate the price change percentage\n",
|
||||
" (max_price - min_price) / NULLIF(min_price, 0) * 100 AS \"Price Change (%)\",\n",
|
||||
" \n",
|
||||
" -- Calculate the participant's volume as a percentage of total volume\n",
|
||||
" (participant_volume / NULLIF(total_volume, 0)) * 100 AS \"Volume (%)\",\n",
|
||||
" \n",
|
||||
" -- Participant volume\n",
|
||||
" participant_volume,\n",
|
||||
" \n",
|
||||
" -- Select the total volume within the window\n",
|
||||
" total_volume AS \"Total Volume\"\n",
|
||||
"FROM\n",
|
||||
" time_windows\n",
|
||||
"\"\"\"\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
" \n",
|
||||
"class Scenario:\n",
|
||||
" seq = SQLQueryInterface(schema=\"trade_schema\")\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" validation_window = kwargs.get('validation_window')\n",
|
||||
" time_window_s = int(validation_window/1000)\n",
|
||||
" query_start_time = datetime.now()\n",
|
||||
" print(\"Query start time :\",query_start_time)\n",
|
||||
" row_list = self.seq.execute_raw(query.format(trade_data_1b=\"trade_10m_v3\",\n",
|
||||
" time_window_s = time_window_s)\n",
|
||||
" )\n",
|
||||
" cols = [\n",
|
||||
" 'START_DATE_TIME',\n",
|
||||
" 'END_DATE_TIME',\n",
|
||||
" 'Focal_id',\n",
|
||||
" 'MIN_PRICE',\n",
|
||||
" 'MAX_PRICE',\n",
|
||||
" 'PRICE_CHANGE_PCT',\n",
|
||||
" 'PARTICIPANT_VOLUME_PCT',\n",
|
||||
" 'PARTICIPANT_VOLUME',\n",
|
||||
" 'TOTAL_VOLUME',\n",
|
||||
" ]\n",
|
||||
" final_scenario_df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME']/\\\n",
|
||||
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
||||
" final_scenario_df['Segment'] = 'Default'\n",
|
||||
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
||||
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
||||
" final_scenario_df.dropna(inplace=True)\n",
|
||||
" # final_scenario_df['RUN_DATE'] = final_scenario_df['END_DATE']\n",
|
||||
" return final_scenario_df\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
172
main.ipynb
172
main.ipynb
@ -1,33 +1,139 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "from tms_data_interface import SQLQueryInterface\n\nclass Scenario:\n\tseq = SQLQueryInterface()\n\n\tdef logic(self, **kwargs):\n\t\t# Write your code here\n"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"import pandas as pd\n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
" \n",
|
||||
"query = \"\"\"\n",
|
||||
"WITH time_windows AS (\n",
|
||||
" SELECT\n",
|
||||
" -- End time is the current trade time\n",
|
||||
" date_time AS end_time,\n",
|
||||
" \n",
|
||||
" -- Subtract seconds from the end_time using date_add() with negative integer interval\n",
|
||||
" date_add('second', -{time_window_s}, date_time) AS start_time,\n",
|
||||
" \n",
|
||||
" -- Trade details\n",
|
||||
" trade_price,\n",
|
||||
" trade_volume,\n",
|
||||
" trader_id,\n",
|
||||
" \n",
|
||||
" -- Calculate minimum price within the time window\n",
|
||||
" MIN(trade_price) OVER (\n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS min_price,\n",
|
||||
" \n",
|
||||
" -- Calculate maximum price within the time window\n",
|
||||
" MAX(trade_price) OVER (\n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS max_price,\n",
|
||||
" \n",
|
||||
" -- Calculate total trade volume within the time window\n",
|
||||
" SUM(trade_volume) OVER ( \n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS total_volume,\n",
|
||||
" \n",
|
||||
" -- Calculate participant's trade volume within the time window\n",
|
||||
" SUM(CASE WHEN trader_id = trader_id THEN trade_volume ELSE 0 END) OVER (\n",
|
||||
" PARTITION BY trader_id \n",
|
||||
" ORDER BY date_time \n",
|
||||
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
||||
" ) AS participant_volume\n",
|
||||
" FROM\n",
|
||||
" {trade_data_1b}\n",
|
||||
")\n",
|
||||
"SELECT\n",
|
||||
" -- Select the time window details\n",
|
||||
" start_time,\n",
|
||||
" end_time,\n",
|
||||
" \n",
|
||||
" -- Select the participant (trader) ID\n",
|
||||
" trader_id AS \"Participant\",\n",
|
||||
" \n",
|
||||
" -- Select the calculated min and max prices\n",
|
||||
" min_price,\n",
|
||||
" max_price,\n",
|
||||
" \n",
|
||||
" -- Calculate the price change percentage\n",
|
||||
" (max_price - min_price) / NULLIF(min_price, 0) * 100 AS \"Price Change (%)\",\n",
|
||||
" \n",
|
||||
" -- Calculate the participant's volume as a percentage of total volume\n",
|
||||
" (participant_volume / NULLIF(total_volume, 0)) * 100 AS \"Volume (%)\",\n",
|
||||
" \n",
|
||||
" -- Participant volume\n",
|
||||
" participant_volume,\n",
|
||||
" \n",
|
||||
" -- Select the total volume within the window\n",
|
||||
" total_volume AS \"Total Volume\"\n",
|
||||
"FROM\n",
|
||||
" time_windows\n",
|
||||
"\"\"\"\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
" \n",
|
||||
"class Scenario:\n",
|
||||
" seq = SQLQueryInterface(schema=\"trade_schema\")\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" validation_window = kwargs.get('validation_window')\n",
|
||||
" time_window_s = int(validation_window/1000)\n",
|
||||
" query_start_time = datetime.now()\n",
|
||||
" print(\"Query start time :\",query_start_time)\n",
|
||||
" row_list = self.seq.execute_raw(query.format(trade_data_1b=\"trade_10m_v3\",\n",
|
||||
" time_window_s = time_window_s)\n",
|
||||
" )\n",
|
||||
" cols = [\n",
|
||||
" 'START_DATE_TIME',\n",
|
||||
" 'END_DATE_TIME',\n",
|
||||
" 'Focal_id',\n",
|
||||
" 'MIN_PRICE',\n",
|
||||
" 'MAX_PRICE',\n",
|
||||
" 'PRICE_CHANGE_PCT',\n",
|
||||
" 'PARTICIPANT_VOLUME_PCT',\n",
|
||||
" 'PARTICIPANT_VOLUME',\n",
|
||||
" 'TOTAL_VOLUME',\n",
|
||||
" ]\n",
|
||||
" final_scenario_df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME']/\\\n",
|
||||
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
||||
" final_scenario_df['Segment'] = 'Default'\n",
|
||||
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
||||
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
||||
" final_scenario_df.dropna(inplace=True)\n",
|
||||
" # final_scenario_df['RUN_DATE'] = final_scenario_df['END_DATE']\n",
|
||||
" return final_scenario_df\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
112
main.py
Normal file
112
main.py
Normal file
@ -0,0 +1,112 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
import pandas as pd
|
||||
from tms_data_interface import SQLQueryInterface
|
||||
|
||||
query = """
|
||||
WITH time_windows AS (
|
||||
SELECT
|
||||
-- End time is the current trade time
|
||||
date_time AS end_time,
|
||||
|
||||
-- Subtract seconds from the end_time using date_add() with negative integer interval
|
||||
date_add('second', -{time_window_s}, date_time) AS start_time,
|
||||
|
||||
-- Trade details
|
||||
trade_price,
|
||||
trade_volume,
|
||||
trader_id,
|
||||
|
||||
-- Calculate minimum price within the time window
|
||||
MIN(trade_price) OVER (
|
||||
ORDER BY date_time
|
||||
RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW
|
||||
) AS min_price,
|
||||
|
||||
-- Calculate maximum price within the time window
|
||||
MAX(trade_price) OVER (
|
||||
ORDER BY date_time
|
||||
RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW
|
||||
) AS max_price,
|
||||
|
||||
-- Calculate total trade volume within the time window
|
||||
SUM(trade_volume) OVER (
|
||||
ORDER BY date_time
|
||||
RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW
|
||||
) AS total_volume,
|
||||
|
||||
-- Calculate participant's trade volume within the time window
|
||||
SUM(CASE WHEN trader_id = trader_id THEN trade_volume ELSE 0 END) OVER (
|
||||
PARTITION BY trader_id
|
||||
ORDER BY date_time
|
||||
RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW
|
||||
) AS participant_volume
|
||||
FROM
|
||||
{trade_data_1b}
|
||||
)
|
||||
SELECT
|
||||
-- Select the time window details
|
||||
start_time,
|
||||
end_time,
|
||||
|
||||
-- Select the participant (trader) ID
|
||||
trader_id AS "Participant",
|
||||
|
||||
-- Select the calculated min and max prices
|
||||
min_price,
|
||||
max_price,
|
||||
|
||||
-- Calculate the price change percentage
|
||||
(max_price - min_price) / NULLIF(min_price, 0) * 100 AS "Price Change (%)",
|
||||
|
||||
-- Calculate the participant's volume as a percentage of total volume
|
||||
(participant_volume / NULLIF(total_volume, 0)) * 100 AS "Volume (%)",
|
||||
|
||||
-- Participant volume
|
||||
participant_volume,
|
||||
|
||||
-- Select the total volume within the window
|
||||
total_volume AS "Total Volume"
|
||||
FROM
|
||||
time_windows
|
||||
"""
|
||||
|
||||
|
||||
from tms_data_interface import SQLQueryInterface
|
||||
|
||||
class Scenario:
|
||||
seq = SQLQueryInterface(schema="trade_schema")
|
||||
def logic(self, **kwargs):
|
||||
validation_window = kwargs.get('validation_window')
|
||||
time_window_s = int(validation_window/1000)
|
||||
query_start_time = datetime.now()
|
||||
print("Query start time :",query_start_time)
|
||||
row_list = self.seq.execute_raw(query.format(trade_data_1b="trade_10m_v3",
|
||||
time_window_s = time_window_s)
|
||||
)
|
||||
cols = [
|
||||
'START_DATE_TIME',
|
||||
'END_DATE_TIME',
|
||||
'Focal_id',
|
||||
'MIN_PRICE',
|
||||
'MAX_PRICE',
|
||||
'PRICE_CHANGE_PCT',
|
||||
'PARTICIPANT_VOLUME_PCT',
|
||||
'PARTICIPANT_VOLUME',
|
||||
'TOTAL_VOLUME',
|
||||
]
|
||||
final_scenario_df = pd.DataFrame(row_list, columns = cols)
|
||||
final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME']/\
|
||||
final_scenario_df['TOTAL_VOLUME'] * 100
|
||||
final_scenario_df['Segment'] = 'Default'
|
||||
final_scenario_df['SAR_FLAG'] = 'N'
|
||||
final_scenario_df['Risk'] = 'Low Risk'
|
||||
final_scenario_df.dropna(inplace=True)
|
||||
# final_scenario_df['RUN_DATE'] = final_scenario_df['END_DATE']
|
||||
return final_scenario_df
|
||||
|
||||
Loading…
Reference in New Issue
Block a user