diff --git a/.ipynb_checkpoints/main-checkpoint.ipynb b/.ipynb_checkpoints/main-checkpoint.ipynb new file mode 100644 index 0000000..a82b70d --- /dev/null +++ b/.ipynb_checkpoints/main-checkpoint.ipynb @@ -0,0 +1,365 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "query = \"\"\"\n", + " select final.CUSTOMER_NUMBER_main as Focal_id,\n", + " final.Credit_transaction_amount,\n", + " final.Total_no_of_credit_transactions,\n", + " final.Debit_transaction_amount,\n", + " final.Total_no_of_debit_transactions,\n", + " final.SEGMENT,\n", + " final.RISK,\n", + " final.SAR_FLAG\n", + " from \n", + " (\n", + " (\n", + " select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n", + " subquery.Credit_transaction_amount,\n", + " subquery.Total_no_of_credit_transactions,\n", + " case\n", + " when subquery.Debit_transaction_amount is NULL then 0\n", + " else Debit_transaction_amount\n", + " end as Debit_transaction_amount,\n", + " case\n", + " when subquery.Total_no_of_debit_transactions is NULL then 0\n", + " else Total_no_of_debit_transactions\n", + " end as Total_no_of_debit_transactions\n", + " from \n", + " (\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_1, \n", + " sum(transaction_amount) as Credit_transaction_amount, \n", + " count(*) as Total_no_of_credit_transactions\n", + " from \n", + " (\n", + " select * \n", + " from {trans_data} trans_table left join {acc_data} acc_table\n", + " on trans_table.benef_account_number = acc_table.account_number\n", + " )\n", + " where account_number not in ('None')\n", + " group by 1\n", + " ) credit left join\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_2, \n", + " sum(transaction_amount) as Debit_transaction_amount, \n", + " count(*) as Total_no_of_debit_transactions\n", + " from \n", + " (\n", + " select * \n", + " from {trans_data} trans_table left join {acc_data} acc_table\n", + " on trans_table.orig_account_number = acc_table.account_number\n", + " )\n", + " where account_number not in ('None')\n", + " group by 1\n", + " ) debit on credit.CUSTOMER_NUMBER_1 = debit.CUSTOMER_NUMBER_2 \n", + " ) subquery\n", + " ) main left join \n", + " (\n", + " select subquery.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n", + " subquery.SEGMENT,\n", + " subquery.RISK,\n", + " case\n", + " when subquery.SAR_FLAG is NULL then 'N'\n", + " else subquery.SAR_FLAG\n", + " end as SAR_FLAG \n", + " from\n", + " (\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_3, \n", + " business_segment as SEGMENT,\n", + " case\n", + " when RISK_CLASSIFICATION = 1 then 'Low Risk'\n", + " when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n", + " when RISK_CLASSIFICATION = 3 then 'High Risk'\n", + " else 'Unknown Risk'\n", + " end AS RISK\n", + " from {cust_data}\n", + " ) cd left join\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_4, \n", + " sar_flag as SAR_FLAG\n", + " from {alert_data}\n", + " ) ad on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n", + " ) subquery\n", + " ) cust_alert on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n", + " ) final\n", + "\"\"\"\n", + "\n", + "from tms_data_interface import SQLQueryInterface\n", + " \n", + "class Scenario:\n", + " seq = SQLQueryInterface(schema=\"transactionschema\")\n", + " \n", + " def logic(self, **kwargs):\n", + " row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n", + " cust_data=\"customer_data_v1\",\n", + " acc_data=\"account_data_v1\",\n", + " alert_data=\"alert_data_v1\")\n", + " )\n", + " cols = [\"Focal_id\", \"Credit_transaction_amount\", \"Total_no_of_credit_transactions\",\n", + " \"Debit_transaction_amount\", \"Total_no_of_debit_transactions\",\n", + " \"Segment\", \"Risk\", \"SAR_FLAG\"]\n", + " df = pd.DataFrame(row_list, columns = cols)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "741546f6-df8f-4578-bbd2-79aa38a98c5b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Focal_idCredit_transaction_amountTotal_no_of_credit_transactionsDebit_transaction_amountTotal_no_of_debit_transactionsSegmentRiskSAR_FLAG
0PN1821211.644268e+0911681.717572e+091198SMELow RiskN
1PN4762082.792031e+0919932.777591e+092010Whole Sale BankingLow RiskN
2PN4139853.621153e+0924383.290559e+092375SMEHigh RiskN
3PN9061301.666937e+0912221.756952e+091177Whole Sale BankingLow RiskN
4PN4469143.379522e+0923783.512353e+092454SMELow RiskN
...........................
10009PN7232074.765892e+072982.651826e+07378Ultra High NetWorthLow RiskN
10010PN8607733.537672e+072562.578618e+07363OthersLow RiskN
10011PN7418433.787797e+072552.909541e+07346Priority BankingMedium RiskN
10012PN5883933.567320e+072542.676294e+07391Mass MarketLow RiskN
10013PN1683723.166679e+072532.707380e+07355Mass MarketLow RiskN
\n", + "

10014 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Focal_id Credit_transaction_amount Total_no_of_credit_transactions \\\n", + "0 PN182121 1.644268e+09 1168 \n", + "1 PN476208 2.792031e+09 1993 \n", + "2 PN413985 3.621153e+09 2438 \n", + "3 PN906130 1.666937e+09 1222 \n", + "4 PN446914 3.379522e+09 2378 \n", + "... ... ... ... \n", + "10009 PN723207 4.765892e+07 298 \n", + "10010 PN860773 3.537672e+07 256 \n", + "10011 PN741843 3.787797e+07 255 \n", + "10012 PN588393 3.567320e+07 254 \n", + "10013 PN168372 3.166679e+07 253 \n", + "\n", + " Debit_transaction_amount Total_no_of_debit_transactions \\\n", + "0 1.717572e+09 1198 \n", + "1 2.777591e+09 2010 \n", + "2 3.290559e+09 2375 \n", + "3 1.756952e+09 1177 \n", + "4 3.512353e+09 2454 \n", + "... ... ... \n", + "10009 2.651826e+07 378 \n", + "10010 2.578618e+07 363 \n", + "10011 2.909541e+07 346 \n", + "10012 2.676294e+07 391 \n", + "10013 2.707380e+07 355 \n", + "\n", + " Segment Risk SAR_FLAG \n", + "0 SME Low Risk N \n", + "1 Whole Sale Banking Low Risk N \n", + "2 SME High Risk N \n", + "3 Whole Sale Banking Low Risk N \n", + "4 SME Low Risk N \n", + "... ... ... ... \n", + "10009 Ultra High NetWorth Low Risk N \n", + "10010 Others Low Risk N \n", + "10011 Priority Banking Medium Risk N \n", + "10012 Mass Market Low Risk N \n", + "10013 Mass Market Low Risk N \n", + "\n", + "[10014 rows x 8 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sen = Scenario()\n", + "# sen.logic()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2f8eee99-046e-4d56-afb8-9007fdc2f5b2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/main.ipynb b/main.ipynb index 3277afb..a82b70d 100644 --- a/main.ipynb +++ b/main.ipynb @@ -1,33 +1,365 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0", - "metadata": {}, - "outputs": [], - "source": "from tms_data_interface import SQLQueryInterface\n\nclass Scenario:\n\tseq = SQLQueryInterface()\n\n\tdef logic(self, **kwargs):\n\t\t# Write your code here\n" - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.13" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "query = \"\"\"\n", + " select final.CUSTOMER_NUMBER_main as Focal_id,\n", + " final.Credit_transaction_amount,\n", + " final.Total_no_of_credit_transactions,\n", + " final.Debit_transaction_amount,\n", + " final.Total_no_of_debit_transactions,\n", + " final.SEGMENT,\n", + " final.RISK,\n", + " final.SAR_FLAG\n", + " from \n", + " (\n", + " (\n", + " select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n", + " subquery.Credit_transaction_amount,\n", + " subquery.Total_no_of_credit_transactions,\n", + " case\n", + " when subquery.Debit_transaction_amount is NULL then 0\n", + " else Debit_transaction_amount\n", + " end as Debit_transaction_amount,\n", + " case\n", + " when subquery.Total_no_of_debit_transactions is NULL then 0\n", + " else Total_no_of_debit_transactions\n", + " end as Total_no_of_debit_transactions\n", + " from \n", + " (\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_1, \n", + " sum(transaction_amount) as Credit_transaction_amount, \n", + " count(*) as Total_no_of_credit_transactions\n", + " from \n", + " (\n", + " select * \n", + " from {trans_data} trans_table left join {acc_data} acc_table\n", + " on trans_table.benef_account_number = acc_table.account_number\n", + " )\n", + " where account_number not in ('None')\n", + " group by 1\n", + " ) credit left join\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_2, \n", + " sum(transaction_amount) as Debit_transaction_amount, \n", + " count(*) as Total_no_of_debit_transactions\n", + " from \n", + " (\n", + " select * \n", + " from {trans_data} trans_table left join {acc_data} acc_table\n", + " on trans_table.orig_account_number = acc_table.account_number\n", + " )\n", + " where account_number not in ('None')\n", + " group by 1\n", + " ) debit on credit.CUSTOMER_NUMBER_1 = debit.CUSTOMER_NUMBER_2 \n", + " ) subquery\n", + " ) main left join \n", + " (\n", + " select subquery.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n", + " subquery.SEGMENT,\n", + " subquery.RISK,\n", + " case\n", + " when subquery.SAR_FLAG is NULL then 'N'\n", + " else subquery.SAR_FLAG\n", + " end as SAR_FLAG \n", + " from\n", + " (\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_3, \n", + " business_segment as SEGMENT,\n", + " case\n", + " when RISK_CLASSIFICATION = 1 then 'Low Risk'\n", + " when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n", + " when RISK_CLASSIFICATION = 3 then 'High Risk'\n", + " else 'Unknown Risk'\n", + " end AS RISK\n", + " from {cust_data}\n", + " ) cd left join\n", + " (\n", + " select customer_number as CUSTOMER_NUMBER_4, \n", + " sar_flag as SAR_FLAG\n", + " from {alert_data}\n", + " ) ad on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n", + " ) subquery\n", + " ) cust_alert on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n", + " ) final\n", + "\"\"\"\n", + "\n", + "from tms_data_interface import SQLQueryInterface\n", + " \n", + "class Scenario:\n", + " seq = SQLQueryInterface(schema=\"transactionschema\")\n", + " \n", + " def logic(self, **kwargs):\n", + " row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n", + " cust_data=\"customer_data_v1\",\n", + " acc_data=\"account_data_v1\",\n", + " alert_data=\"alert_data_v1\")\n", + " )\n", + " cols = [\"Focal_id\", \"Credit_transaction_amount\", \"Total_no_of_credit_transactions\",\n", + " \"Debit_transaction_amount\", \"Total_no_of_debit_transactions\",\n", + " \"Segment\", \"Risk\", \"SAR_FLAG\"]\n", + " df = pd.DataFrame(row_list, columns = cols)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "741546f6-df8f-4578-bbd2-79aa38a98c5b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Focal_idCredit_transaction_amountTotal_no_of_credit_transactionsDebit_transaction_amountTotal_no_of_debit_transactionsSegmentRiskSAR_FLAG
0PN1821211.644268e+0911681.717572e+091198SMELow RiskN
1PN4762082.792031e+0919932.777591e+092010Whole Sale BankingLow RiskN
2PN4139853.621153e+0924383.290559e+092375SMEHigh RiskN
3PN9061301.666937e+0912221.756952e+091177Whole Sale BankingLow RiskN
4PN4469143.379522e+0923783.512353e+092454SMELow RiskN
...........................
10009PN7232074.765892e+072982.651826e+07378Ultra High NetWorthLow RiskN
10010PN8607733.537672e+072562.578618e+07363OthersLow RiskN
10011PN7418433.787797e+072552.909541e+07346Priority BankingMedium RiskN
10012PN5883933.567320e+072542.676294e+07391Mass MarketLow RiskN
10013PN1683723.166679e+072532.707380e+07355Mass MarketLow RiskN
\n", + "

10014 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Focal_id Credit_transaction_amount Total_no_of_credit_transactions \\\n", + "0 PN182121 1.644268e+09 1168 \n", + "1 PN476208 2.792031e+09 1993 \n", + "2 PN413985 3.621153e+09 2438 \n", + "3 PN906130 1.666937e+09 1222 \n", + "4 PN446914 3.379522e+09 2378 \n", + "... ... ... ... \n", + "10009 PN723207 4.765892e+07 298 \n", + "10010 PN860773 3.537672e+07 256 \n", + "10011 PN741843 3.787797e+07 255 \n", + "10012 PN588393 3.567320e+07 254 \n", + "10013 PN168372 3.166679e+07 253 \n", + "\n", + " Debit_transaction_amount Total_no_of_debit_transactions \\\n", + "0 1.717572e+09 1198 \n", + "1 2.777591e+09 2010 \n", + "2 3.290559e+09 2375 \n", + "3 1.756952e+09 1177 \n", + "4 3.512353e+09 2454 \n", + "... ... ... \n", + "10009 2.651826e+07 378 \n", + "10010 2.578618e+07 363 \n", + "10011 2.909541e+07 346 \n", + "10012 2.676294e+07 391 \n", + "10013 2.707380e+07 355 \n", + "\n", + " Segment Risk SAR_FLAG \n", + "0 SME Low Risk N \n", + "1 Whole Sale Banking Low Risk N \n", + "2 SME High Risk N \n", + "3 Whole Sale Banking Low Risk N \n", + "4 SME Low Risk N \n", + "... ... ... ... \n", + "10009 Ultra High NetWorth Low Risk N \n", + "10010 Others Low Risk N \n", + "10011 Priority Banking Medium Risk N \n", + "10012 Mass Market Low Risk N \n", + "10013 Mass Market Low Risk N \n", + "\n", + "[10014 rows x 8 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sen = Scenario()\n", + "# sen.logic()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2f8eee99-046e-4d56-afb8-9007fdc2f5b2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/main.py b/main.py new file mode 100644 index 0000000..b3e9e06 --- /dev/null +++ b/main.py @@ -0,0 +1,122 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[2]: + + +import pandas as pd + +query = """ + select final.CUSTOMER_NUMBER_main as Focal_id, + final.Credit_transaction_amount, + final.Total_no_of_credit_transactions, + final.Debit_transaction_amount, + final.Total_no_of_debit_transactions, + final.SEGMENT, + final.RISK, + final.SAR_FLAG + from + ( + ( + select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main, + subquery.Credit_transaction_amount, + subquery.Total_no_of_credit_transactions, + case + when subquery.Debit_transaction_amount is NULL then 0 + else Debit_transaction_amount + end as Debit_transaction_amount, + case + when subquery.Total_no_of_debit_transactions is NULL then 0 + else Total_no_of_debit_transactions + end as Total_no_of_debit_transactions + from + ( + ( + select customer_number as CUSTOMER_NUMBER_1, + sum(transaction_amount) as Credit_transaction_amount, + count(*) as Total_no_of_credit_transactions + from + ( + select * + from {trans_data} trans_table left join {acc_data} acc_table + on trans_table.benef_account_number = acc_table.account_number + ) + where account_number not in ('None') + group by 1 + ) credit left join + ( + select customer_number as CUSTOMER_NUMBER_2, + sum(transaction_amount) as Debit_transaction_amount, + count(*) as Total_no_of_debit_transactions + from + ( + select * + from {trans_data} trans_table left join {acc_data} acc_table + on trans_table.orig_account_number = acc_table.account_number + ) + where account_number not in ('None') + group by 1 + ) debit on credit.CUSTOMER_NUMBER_1 = debit.CUSTOMER_NUMBER_2 + ) subquery + ) main left join + ( + select subquery.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust, + subquery.SEGMENT, + subquery.RISK, + case + when subquery.SAR_FLAG is NULL then 'N' + else subquery.SAR_FLAG + end as SAR_FLAG + from + ( + ( + select customer_number as CUSTOMER_NUMBER_3, + business_segment as SEGMENT, + case + when RISK_CLASSIFICATION = 1 then 'Low Risk' + when RISK_CLASSIFICATION = 2 then 'Medium Risk' + when RISK_CLASSIFICATION = 3 then 'High Risk' + else 'Unknown Risk' + end AS RISK + from {cust_data} + ) cd left join + ( + select customer_number as CUSTOMER_NUMBER_4, + sar_flag as SAR_FLAG + from {alert_data} + ) ad on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4 + ) subquery + ) cust_alert on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main + ) final +""" + +from tms_data_interface import SQLQueryInterface + +class Scenario: + seq = SQLQueryInterface(schema="transactionschema") + + def logic(self, **kwargs): + row_list = self.seq.execute_raw(query.format(trans_data="transaction10m", + cust_data="customer_data_v1", + acc_data="account_data_v1", + alert_data="alert_data_v1") + ) + cols = ["Focal_id", "Credit_transaction_amount", "Total_no_of_credit_transactions", + "Debit_transaction_amount", "Total_no_of_debit_transactions", + "Segment", "Risk", "SAR_FLAG"] + df = pd.DataFrame(row_list, columns = cols) + return df + + +# In[3]: + + +# sen = Scenario() +# sen.logic() + + +# In[ ]: + + + +