generated from dhairya/scenario_template
System save at 09/10/2024 08:49 by user_client2024
This commit is contained in:
parent
2d4f5399d7
commit
e84566cd33
368
.ipynb_checkpoints/main-checkpoint.ipynb
Normal file
368
.ipynb_checkpoints/main-checkpoint.ipynb
Normal file
@ -0,0 +1,368 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "2edb58c0-33a2-4436-8128-05645af9990d",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"seq = SQLQueryInterface(schema=\"transactionschema\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "0ccc875a-6ff5-4741-9495-93c6871b1027",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[['account_data_v1'],\n",
|
||||
" ['account_data_v2'],\n",
|
||||
" ['alert_data_v1'],\n",
|
||||
" ['alert_data_v2'],\n",
|
||||
" ['customer_data_v1'],\n",
|
||||
" ['customer_data_v2'],\n",
|
||||
" ['transaction10m'],\n",
|
||||
" ['transaction60m']]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"seq.execute_raw(\"show tables\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "01502887-b11f-46d2-9a52-e493df19d049",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"\"\"\n",
|
||||
" select final.CUSTOMER_NUMBER_main as Focal_id,\n",
|
||||
" CAST(final.Total_hrc_transaction_amount AS DECIMAL(18, 2)) AS Total_hrc_transaction_amount,\n",
|
||||
" final.Unique_country_codes,\n",
|
||||
" final.SEGMENT,\n",
|
||||
" final.RISK,\n",
|
||||
" final.SAR_FLAG\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" (\n",
|
||||
" select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n",
|
||||
" subquery.Total_hrc_transaction_amount,\n",
|
||||
" subquery.Unique_country_codes\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_1, \n",
|
||||
" sum(transaction_amount) as Total_hrc_transaction_amount, \n",
|
||||
" array_join(array_agg(DISTINCT benef_cntry_code), ',') AS unique_country_codes\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" select * \n",
|
||||
" from {trans_data} trans_table \n",
|
||||
" left join {acc_data} acc_table\n",
|
||||
" on trans_table.benef_account_number = acc_table.account_number\n",
|
||||
" ) trans\n",
|
||||
" where account_number not in ('None')\n",
|
||||
" group by customer_number\n",
|
||||
" ) subquery\n",
|
||||
" ) main \n",
|
||||
" left join \n",
|
||||
" (\n",
|
||||
" select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n",
|
||||
" cd.SEGMENT,\n",
|
||||
" cd.RISK,\n",
|
||||
" case\n",
|
||||
" when ad.SAR_FLAG is NULL then 'N'\n",
|
||||
" else ad.SAR_FLAG\n",
|
||||
" end as SAR_FLAG \n",
|
||||
" from\n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_3, \n",
|
||||
" business_segment as SEGMENT,\n",
|
||||
" case\n",
|
||||
" when RISK_CLASSIFICATION = 1 then 'Low Risk'\n",
|
||||
" when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n",
|
||||
" when RISK_CLASSIFICATION = 3 then 'High Risk'\n",
|
||||
" else 'Unknown Risk'\n",
|
||||
" end AS RISK\n",
|
||||
" from {cust_data}\n",
|
||||
" ) cd \n",
|
||||
" left join\n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_4, \n",
|
||||
" sar_flag as SAR_FLAG\n",
|
||||
" from {alert_data}\n",
|
||||
" ) ad \n",
|
||||
" on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n",
|
||||
" ) as cust_alert\n",
|
||||
" on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n",
|
||||
" ) as final\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "c28e15b5-4b09-46a6-849e-7ffd5cefee7f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"\n",
|
||||
"class Scenario:\n",
|
||||
" seq = SQLQueryInterface(schema=\"transactionschema\")\n",
|
||||
"\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
|
||||
" cust_data=\"customer_data_v1\",\n",
|
||||
" acc_data=\"account_data_v1\",\n",
|
||||
" alert_data=\"alert_data_v1\")\n",
|
||||
" )\n",
|
||||
" cols = [\"Focal_id\", \"Total_hrc_transaction_amount\", \"Unique_country_codes\",\n",
|
||||
" \"Segment\", \"Risk\", \"SAR_FLAG\"]\n",
|
||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" return df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "dc94e713-7267-499a-897f-672209d563c0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Focal_id</th>\n",
|
||||
" <th>Total_hrc_transaction_amount</th>\n",
|
||||
" <th>Unique_country_codes</th>\n",
|
||||
" <th>Segment</th>\n",
|
||||
" <th>Risk</th>\n",
|
||||
" <th>SAR_FLAG</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>PN739187</td>\n",
|
||||
" <td>5288386944.18</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>SME</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>PN573373</td>\n",
|
||||
" <td>3984448017.83</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>PN791113</td>\n",
|
||||
" <td>2203599126.03</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>SME</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>PN572058</td>\n",
|
||||
" <td>4424937298.78</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>PN375785</td>\n",
|
||||
" <td>496146009.32</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10009</th>\n",
|
||||
" <td>PN759572</td>\n",
|
||||
" <td>42099733.92</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Ultra High NetWorth</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10010</th>\n",
|
||||
" <td>PN147338</td>\n",
|
||||
" <td>39374120.63</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Private Banking</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10011</th>\n",
|
||||
" <td>PN632196</td>\n",
|
||||
" <td>37892236.97</td>\n",
|
||||
" <td>LK</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10012</th>\n",
|
||||
" <td>PN100406</td>\n",
|
||||
" <td>35620658.59</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10013</th>\n",
|
||||
" <td>PN452769</td>\n",
|
||||
" <td>35792822.47</td>\n",
|
||||
" <td>AM</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>10014 rows × 6 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Focal_id Total_hrc_transaction_amount Unique_country_codes \\\n",
|
||||
"0 PN739187 5288386944.18 None \n",
|
||||
"1 PN573373 3984448017.83 None \n",
|
||||
"2 PN791113 2203599126.03 None \n",
|
||||
"3 PN572058 4424937298.78 None \n",
|
||||
"4 PN375785 496146009.32 None \n",
|
||||
"... ... ... ... \n",
|
||||
"10009 PN759572 42099733.92 IN \n",
|
||||
"10010 PN147338 39374120.63 IN \n",
|
||||
"10011 PN632196 37892236.97 LK \n",
|
||||
"10012 PN100406 35620658.59 IN \n",
|
||||
"10013 PN452769 35792822.47 AM \n",
|
||||
"\n",
|
||||
" Segment Risk SAR_FLAG \n",
|
||||
"0 SME Low Risk N \n",
|
||||
"1 Whole Sale Banking Low Risk Y \n",
|
||||
"2 SME High Risk N \n",
|
||||
"3 Whole Sale Banking Low Risk N \n",
|
||||
"4 Whole Sale Banking High Risk N \n",
|
||||
"... ... ... ... \n",
|
||||
"10009 Ultra High NetWorth Medium Risk Y \n",
|
||||
"10010 Private Banking Medium Risk N \n",
|
||||
"10011 Others Medium Risk N \n",
|
||||
"10012 Others High Risk N \n",
|
||||
"10013 Others Low Risk N \n",
|
||||
"\n",
|
||||
"[10014 rows x 6 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# sen = Scenario()\n",
|
||||
"# sen.logic()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7e585bbc-7baf-41a5-8f05-ca25c08e7ca8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
401
main.ipynb
401
main.ipynb
@ -1,33 +1,368 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": "from tms_data_interface import SQLQueryInterface\n\nclass Scenario:\n\tseq = SQLQueryInterface()\n\n\tdef logic(self, **kwargs):\n\t\t# Write your code here\n"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "2edb58c0-33a2-4436-8128-05645af9990d",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"seq = SQLQueryInterface(schema=\"transactionschema\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "0ccc875a-6ff5-4741-9495-93c6871b1027",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[['account_data_v1'],\n",
|
||||
" ['account_data_v2'],\n",
|
||||
" ['alert_data_v1'],\n",
|
||||
" ['alert_data_v2'],\n",
|
||||
" ['customer_data_v1'],\n",
|
||||
" ['customer_data_v2'],\n",
|
||||
" ['transaction10m'],\n",
|
||||
" ['transaction60m']]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"seq.execute_raw(\"show tables\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "01502887-b11f-46d2-9a52-e493df19d049",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query = \"\"\"\n",
|
||||
" select final.CUSTOMER_NUMBER_main as Focal_id,\n",
|
||||
" CAST(final.Total_hrc_transaction_amount AS DECIMAL(18, 2)) AS Total_hrc_transaction_amount,\n",
|
||||
" final.Unique_country_codes,\n",
|
||||
" final.SEGMENT,\n",
|
||||
" final.RISK,\n",
|
||||
" final.SAR_FLAG\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" (\n",
|
||||
" select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n",
|
||||
" subquery.Total_hrc_transaction_amount,\n",
|
||||
" subquery.Unique_country_codes\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_1, \n",
|
||||
" sum(transaction_amount) as Total_hrc_transaction_amount, \n",
|
||||
" array_join(array_agg(DISTINCT benef_cntry_code), ',') AS unique_country_codes\n",
|
||||
" from \n",
|
||||
" (\n",
|
||||
" select * \n",
|
||||
" from {trans_data} trans_table \n",
|
||||
" left join {acc_data} acc_table\n",
|
||||
" on trans_table.benef_account_number = acc_table.account_number\n",
|
||||
" ) trans\n",
|
||||
" where account_number not in ('None')\n",
|
||||
" group by customer_number\n",
|
||||
" ) subquery\n",
|
||||
" ) main \n",
|
||||
" left join \n",
|
||||
" (\n",
|
||||
" select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n",
|
||||
" cd.SEGMENT,\n",
|
||||
" cd.RISK,\n",
|
||||
" case\n",
|
||||
" when ad.SAR_FLAG is NULL then 'N'\n",
|
||||
" else ad.SAR_FLAG\n",
|
||||
" end as SAR_FLAG \n",
|
||||
" from\n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_3, \n",
|
||||
" business_segment as SEGMENT,\n",
|
||||
" case\n",
|
||||
" when RISK_CLASSIFICATION = 1 then 'Low Risk'\n",
|
||||
" when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n",
|
||||
" when RISK_CLASSIFICATION = 3 then 'High Risk'\n",
|
||||
" else 'Unknown Risk'\n",
|
||||
" end AS RISK\n",
|
||||
" from {cust_data}\n",
|
||||
" ) cd \n",
|
||||
" left join\n",
|
||||
" (\n",
|
||||
" select customer_number as CUSTOMER_NUMBER_4, \n",
|
||||
" sar_flag as SAR_FLAG\n",
|
||||
" from {alert_data}\n",
|
||||
" ) ad \n",
|
||||
" on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n",
|
||||
" ) as cust_alert\n",
|
||||
" on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n",
|
||||
" ) as final\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "c28e15b5-4b09-46a6-849e-7ffd5cefee7f",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from tms_data_interface import SQLQueryInterface\n",
|
||||
"\n",
|
||||
"class Scenario:\n",
|
||||
" seq = SQLQueryInterface(schema=\"transactionschema\")\n",
|
||||
"\n",
|
||||
" def logic(self, **kwargs):\n",
|
||||
" row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
|
||||
" cust_data=\"customer_data_v1\",\n",
|
||||
" acc_data=\"account_data_v1\",\n",
|
||||
" alert_data=\"alert_data_v1\")\n",
|
||||
" )\n",
|
||||
" cols = [\"Focal_id\", \"Total_hrc_transaction_amount\", \"Unique_country_codes\",\n",
|
||||
" \"Segment\", \"Risk\", \"SAR_FLAG\"]\n",
|
||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" return df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "dc94e713-7267-499a-897f-672209d563c0",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Focal_id</th>\n",
|
||||
" <th>Total_hrc_transaction_amount</th>\n",
|
||||
" <th>Unique_country_codes</th>\n",
|
||||
" <th>Segment</th>\n",
|
||||
" <th>Risk</th>\n",
|
||||
" <th>SAR_FLAG</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>PN739187</td>\n",
|
||||
" <td>5288386944.18</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>SME</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>PN573373</td>\n",
|
||||
" <td>3984448017.83</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>PN791113</td>\n",
|
||||
" <td>2203599126.03</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>SME</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>PN572058</td>\n",
|
||||
" <td>4424937298.78</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>PN375785</td>\n",
|
||||
" <td>496146009.32</td>\n",
|
||||
" <td>None</td>\n",
|
||||
" <td>Whole Sale Banking</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10009</th>\n",
|
||||
" <td>PN759572</td>\n",
|
||||
" <td>42099733.92</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Ultra High NetWorth</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>Y</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10010</th>\n",
|
||||
" <td>PN147338</td>\n",
|
||||
" <td>39374120.63</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Private Banking</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10011</th>\n",
|
||||
" <td>PN632196</td>\n",
|
||||
" <td>37892236.97</td>\n",
|
||||
" <td>LK</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>Medium Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10012</th>\n",
|
||||
" <td>PN100406</td>\n",
|
||||
" <td>35620658.59</td>\n",
|
||||
" <td>IN</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>High Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>10013</th>\n",
|
||||
" <td>PN452769</td>\n",
|
||||
" <td>35792822.47</td>\n",
|
||||
" <td>AM</td>\n",
|
||||
" <td>Others</td>\n",
|
||||
" <td>Low Risk</td>\n",
|
||||
" <td>N</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>10014 rows × 6 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Focal_id Total_hrc_transaction_amount Unique_country_codes \\\n",
|
||||
"0 PN739187 5288386944.18 None \n",
|
||||
"1 PN573373 3984448017.83 None \n",
|
||||
"2 PN791113 2203599126.03 None \n",
|
||||
"3 PN572058 4424937298.78 None \n",
|
||||
"4 PN375785 496146009.32 None \n",
|
||||
"... ... ... ... \n",
|
||||
"10009 PN759572 42099733.92 IN \n",
|
||||
"10010 PN147338 39374120.63 IN \n",
|
||||
"10011 PN632196 37892236.97 LK \n",
|
||||
"10012 PN100406 35620658.59 IN \n",
|
||||
"10013 PN452769 35792822.47 AM \n",
|
||||
"\n",
|
||||
" Segment Risk SAR_FLAG \n",
|
||||
"0 SME Low Risk N \n",
|
||||
"1 Whole Sale Banking Low Risk Y \n",
|
||||
"2 SME High Risk N \n",
|
||||
"3 Whole Sale Banking Low Risk N \n",
|
||||
"4 Whole Sale Banking High Risk N \n",
|
||||
"... ... ... ... \n",
|
||||
"10009 Ultra High NetWorth Medium Risk Y \n",
|
||||
"10010 Private Banking Medium Risk N \n",
|
||||
"10011 Others Medium Risk N \n",
|
||||
"10012 Others High Risk N \n",
|
||||
"10013 Others Low Risk N \n",
|
||||
"\n",
|
||||
"[10014 rows x 6 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# sen = Scenario()\n",
|
||||
"# sen.logic()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7e585bbc-7baf-41a5-8f05-ca25c08e7ca8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
120
main.py
Normal file
120
main.py
Normal file
@ -0,0 +1,120 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
from tms_data_interface import SQLQueryInterface
|
||||
seq = SQLQueryInterface(schema="transactionschema")
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
seq.execute_raw("show tables")
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
query = """
|
||||
select final.CUSTOMER_NUMBER_main as Focal_id,
|
||||
CAST(final.Total_hrc_transaction_amount AS DECIMAL(18, 2)) AS Total_hrc_transaction_amount,
|
||||
final.Unique_country_codes,
|
||||
final.SEGMENT,
|
||||
final.RISK,
|
||||
final.SAR_FLAG
|
||||
from
|
||||
(
|
||||
(
|
||||
select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,
|
||||
subquery.Total_hrc_transaction_amount,
|
||||
subquery.Unique_country_codes
|
||||
from
|
||||
(
|
||||
select customer_number as CUSTOMER_NUMBER_1,
|
||||
sum(transaction_amount) as Total_hrc_transaction_amount,
|
||||
array_join(array_agg(DISTINCT benef_cntry_code), ',') AS unique_country_codes
|
||||
from
|
||||
(
|
||||
select *
|
||||
from {trans_data} trans_table
|
||||
left join {acc_data} acc_table
|
||||
on trans_table.benef_account_number = acc_table.account_number
|
||||
) trans
|
||||
where account_number not in ('None')
|
||||
group by customer_number
|
||||
) subquery
|
||||
) main
|
||||
left join
|
||||
(
|
||||
select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,
|
||||
cd.SEGMENT,
|
||||
cd.RISK,
|
||||
case
|
||||
when ad.SAR_FLAG is NULL then 'N'
|
||||
else ad.SAR_FLAG
|
||||
end as SAR_FLAG
|
||||
from
|
||||
(
|
||||
select customer_number as CUSTOMER_NUMBER_3,
|
||||
business_segment as SEGMENT,
|
||||
case
|
||||
when RISK_CLASSIFICATION = 1 then 'Low Risk'
|
||||
when RISK_CLASSIFICATION = 2 then 'Medium Risk'
|
||||
when RISK_CLASSIFICATION = 3 then 'High Risk'
|
||||
else 'Unknown Risk'
|
||||
end AS RISK
|
||||
from {cust_data}
|
||||
) cd
|
||||
left join
|
||||
(
|
||||
select customer_number as CUSTOMER_NUMBER_4,
|
||||
sar_flag as SAR_FLAG
|
||||
from {alert_data}
|
||||
) ad
|
||||
on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4
|
||||
) as cust_alert
|
||||
on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main
|
||||
) as final
|
||||
"""
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
from tms_data_interface import SQLQueryInterface
|
||||
|
||||
class Scenario:
|
||||
seq = SQLQueryInterface(schema="transactionschema")
|
||||
|
||||
def logic(self, **kwargs):
|
||||
row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
|
||||
cust_data="customer_data_v1",
|
||||
acc_data="account_data_v1",
|
||||
alert_data="alert_data_v1")
|
||||
)
|
||||
cols = ["Focal_id", "Total_hrc_transaction_amount", "Unique_country_codes",
|
||||
"Segment", "Risk", "SAR_FLAG"]
|
||||
df = pd.DataFrame(row_list, columns = cols)
|
||||
return df
|
||||
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
# sen = Scenario()
|
||||
# sen.logic()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user