generated from dhairya/scenario_template
251 lines
9.7 KiB
Plaintext
251 lines
9.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"ename": "IndentationError",
|
|
"evalue": "expected an indented block after function definition on line 6 (1665995538.py, line 8)",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[0;36m Cell \u001b[0;32mIn[1], line 8\u001b[0;36m\u001b[0m\n\u001b[0;31m import pandas as pd\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m expected an indented block after function definition on line 6\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from tms_data_interface import SQLQueryInterface\n",
|
|
"\n",
|
|
"class Scenario:\n",
|
|
"\tseq = SQLQueryInterface()\n",
|
|
"\n",
|
|
"\tdef logic(self, **kwargs):\n",
|
|
"\t\t# from datetime import datetime, timedelta\n",
|
|
"import pandas as pd\n",
|
|
"from tms_data_interface import SQLQueryInterface\n",
|
|
"\n",
|
|
"query = \"\"\"\n",
|
|
"WITH trade_data AS (\n",
|
|
" SELECT \n",
|
|
" trader_id,\n",
|
|
" date_time,\n",
|
|
" trade_price,\n",
|
|
" trade_volume,\n",
|
|
" -- Create a time window for each trade\n",
|
|
" date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
|
|
" date_time AS window_end\n",
|
|
" FROM {trade_data_1b}\n",
|
|
"),\n",
|
|
"\n",
|
|
"aggregated_trades AS (\n",
|
|
" SELECT \n",
|
|
" td.trader_id,\n",
|
|
" td.window_start,\n",
|
|
" td.window_end,\n",
|
|
" SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
|
|
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
|
" SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
|
|
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
|
" SUM(trade_volume) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
|
" MAX(trade_price) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
|
" MIN(trade_price) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
|
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
|
" FROM trade_data td\n",
|
|
")\n",
|
|
"\n",
|
|
"SELECT \n",
|
|
" window_start AS start_time,\n",
|
|
" window_end AS end_time,\n",
|
|
" trader_id AS \"Participant\",\n",
|
|
" lowest_price AS min_price,\n",
|
|
" highest_price AS max_price,\n",
|
|
" (highest_price - lowest_price) / NULLIF(lowest_price, 0) * 100 AS \"Price Change (%)\",\n",
|
|
" buy_volume AS participant_volume,\n",
|
|
" total_volume,\n",
|
|
" (buy_volume / NULLIF(total_volume, 0)) * 100 AS \"Volume (%)\"\n",
|
|
"FROM aggregated_trades\n",
|
|
"WHERE buy_volume > 0 OR sell_volume > 0\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"class Scenario:\n",
|
|
" seq = SQLQueryInterface(schema=\"internal\")\n",
|
|
"\n",
|
|
" def logic(self, **kwargs):\n",
|
|
" validation_window = kwargs.get('validation_window')\n",
|
|
" time_window_s = int(validation_window / 1000)\n",
|
|
" query_start_time = datetime.now()\n",
|
|
" print(\"Query start time :\", query_start_time)\n",
|
|
"\n",
|
|
" row_list = self.seq.execute_raw(query.format(trade_data_1b=\"trade_data_2b\",\n",
|
|
" time_window_s=time_window_s)\n",
|
|
" )\n",
|
|
"\n",
|
|
" cols = [\n",
|
|
" 'START_DATE_TIME',\n",
|
|
" 'END_DATE_TIME',\n",
|
|
" 'PARTICIPANT',\n",
|
|
" 'MIN_PRICE',\n",
|
|
" 'MAX_PRICE',\n",
|
|
" 'PRICE_CHANGE (%)',\n",
|
|
" 'PARTICIPANT_VOLUME',\n",
|
|
" 'TOTAL_VOLUME',\n",
|
|
" 'VOLUME (%)',\n",
|
|
" ]\n",
|
|
"\n",
|
|
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
|
|
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
|
|
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
|
"\n",
|
|
" # Adding additional columns\n",
|
|
" final_scenario_df['Segment'] = 'Default'\n",
|
|
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
|
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
|
"\n",
|
|
" return final_scenario_df\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "90c70e46-71a0-44a6-8090-f53aad3193c3",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from datetime import datetime\n",
|
|
"import pandas as pd\n",
|
|
"from tms_data_interface import SQLQueryInterface\n",
|
|
"\n",
|
|
"# SQL query to aggregate trade data and compute metrics\n",
|
|
"query = \"\"\"\n",
|
|
"WITH trade_data AS (\n",
|
|
" SELECT \n",
|
|
" trader_id,\n",
|
|
" date_time,\n",
|
|
" trade_price,\n",
|
|
" trade_volume,\n",
|
|
" -- Create a time window for each trade\n",
|
|
" date_time - INTERVAL '1 second' * {time_window_s} AS window_start,\n",
|
|
" date_time AS window_end\n",
|
|
" FROM {trade_data_1b}\n",
|
|
"),\n",
|
|
"\n",
|
|
"aggregated_trades AS (\n",
|
|
" SELECT \n",
|
|
" td.trader_id,\n",
|
|
" td.window_start,\n",
|
|
" td.window_end,\n",
|
|
" SUM(CASE WHEN trade_side = 'buy' THEN trade_volume ELSE 0 END) \n",
|
|
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS buy_volume,\n",
|
|
" SUM(CASE WHEN trade_side = 'sell' THEN trade_volume ELSE 0 END) \n",
|
|
" OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS sell_volume,\n",
|
|
" SUM(trade_volume) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS total_volume,\n",
|
|
" MAX(trade_price) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS highest_price,\n",
|
|
" MIN(trade_price) OVER (ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS lowest_price,\n",
|
|
" COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time \n",
|
|
" RANGE BETWEEN {time_window_s} PRECEDING AND CURRENT ROW) AS number_of_trades\n",
|
|
" FROM trade_data td\n",
|
|
")\n",
|
|
"\n",
|
|
"SELECT \n",
|
|
" window_start AS start_time,\n",
|
|
" window_end AS end_time,\n",
|
|
" trader_id AS \"Participant\",\n",
|
|
" lowest_price AS min_price,\n",
|
|
" highest_price AS max_price,\n",
|
|
" (highest_price - lowest_price) / NULLIF(lowest_price, 0) * 100 AS \"Price Change (%)\",\n",
|
|
" buy_volume AS participant_volume,\n",
|
|
" total_volume,\n",
|
|
" (buy_volume / NULLIF(total_volume, 0)) * 100 AS \"Volume (%)\"\n",
|
|
"FROM aggregated_trades\n",
|
|
"WHERE buy_volume > 0 OR sell_volume > 0\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"class Scenario:\n",
|
|
" seq = SQLQueryInterface(schema=\"internal\")\n",
|
|
"\n",
|
|
" def logic(self, **kwargs):\n",
|
|
" validation_window = kwargs.get('validation_window')\n",
|
|
" time_window_s = int(validation_window / 1000)\n",
|
|
" \n",
|
|
" query_start_time = datetime.now()\n",
|
|
" print(\"Query start time:\", query_start_time)\n",
|
|
"\n",
|
|
" row_list = self.seq.execute_raw(query.format(\n",
|
|
" trade_data_1b=\"trade_data_2b\",\n",
|
|
" time_window_s=time_window_s\n",
|
|
" ))\n",
|
|
"\n",
|
|
" cols = [\n",
|
|
" 'START_DATE_TIME',\n",
|
|
" 'END_DATE_TIME',\n",
|
|
" 'PARTICIPANT',\n",
|
|
" 'MIN_PRICE',\n",
|
|
" 'MAX_PRICE',\n",
|
|
" 'PRICE_CHANGE (%)',\n",
|
|
" 'PARTICIPANT_VOLUME',\n",
|
|
" 'TOTAL_VOLUME',\n",
|
|
" 'VOLUME (%)',\n",
|
|
" ]\n",
|
|
"\n",
|
|
" final_scenario_df = pd.DataFrame(row_list, columns=cols)\n",
|
|
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \\\n",
|
|
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
|
"\n",
|
|
" # Adding additional columns\n",
|
|
" final_scenario_df['Segment'] = 'Default'\n",
|
|
" final_scenario_df['SAR_FLAG'] = 'N'\n",
|
|
" final_scenario_df['Risk'] = 'Low Risk'\n",
|
|
"\n",
|
|
" return final_scenario_df\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "caee5554-5254-4388-bf24-029281d77890",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|