62/main.py
2024-10-14 05:46:27 +00:00

126 lines
4.0 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
from datetime import datetime
import pandas as pd
from tms_data_interface import SQLQueryInterface
# SQL query to aggregate trade data and compute metrics using ROWS with optimizations
query_template = """
WITH trade_data AS (
SELECT
trader_id,
date_time,
trade_price,
trade_volume,
-- Create a time window for each trade by subtracting time_window_s seconds
date_add('second', -{time_window_s}, date_time) AS window_start,
date_time AS window_end,
trade_side
FROM {trade_10m_v3}
WHERE date_time BETWEEN date_add('day', -1, current_date) AND current_date -- Limit to the last 1 day of data
LIMIT 10000 -- Process only a subset of records for testing
),
aggregated_trades AS (
SELECT
td.trader_id,
td.window_start,
td.window_end,
SUM(CASE WHEN td.trade_side = 'buy' THEN td.trade_volume ELSE 0 END)
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS buy_volume,
SUM(CASE WHEN td.trade_side = 'sell' THEN td.trade_volume ELSE 0 END)
OVER (PARTITION BY td.trader_id ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS sell_volume,
SUM(td.trade_volume) OVER (ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_volume,
MAX(td.trade_price) OVER (ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS highest_price,
MIN(td.trade_price) OVER (ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS lowest_price,
COUNT(*) OVER (PARTITION BY td.trader_id ORDER BY td.date_time
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS number_of_trades
FROM trade_data td
)
SELECT
window_start AS start_time,
window_end AS end_time,
trader_id AS "Participant",
lowest_price AS min_price,
highest_price AS max_price,
(highest_price - lowest_price) / NULLIF(lowest_price, 0) * 100 AS "Price Change (%)",
buy_volume AS participant_volume,
total_volume,
(buy_volume / NULLIF(total_volume, 0)) * 100 AS "Volume (%)"
FROM aggregated_trades
WHERE buy_volume > 0 OR sell_volume > 0
limit 1000
"""
class Scenario:
seq = SQLQueryInterface(schema="trade_schema")
def logic(self, **kwargs):
validation_window = kwargs.get('validation_window')
time_window_s = int(validation_window / 1000) # Convert milliseconds to seconds
query_start_time = datetime.now()
print("Query start time:", query_start_time)
# Execute the optimized query using a time window and limit
row_list = self.seq.execute_raw(query_template.format(
trade_10m_v3="trade_10m_v3",
time_window_s=time_window_s
))
# Define the columns for the resulting DataFrame
cols = [
'START_DATE_TIME',
'END_DATE_TIME',
'FOCAL_ID',
'MIN_PRICE',
'MAX_PRICE',
'PRICE_CHANGE (%)',
'PARTICIPANT_VOLUME',
'TOTAL_VOLUME',
'VOLUME (%)',
]
# Create DataFrame from query results
final_scenario_df = pd.DataFrame(row_list, columns=cols)
# Calculate the participant's volume percentage
final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME'] / \
final_scenario_df['TOTAL_VOLUME'] * 100
# Add additional columns to the DataFrame
final_scenario_df['Segment'] = 'Default'
final_scenario_df['SAR_FLAG'] = 'N'
final_scenario_df['Risk'] = 'Low Risk'
print("Query end time:", datetime.now())
return final_scenario_df
# In[3]:
# Instantiate and execute logic
scenario = Scenario()
scenario.logic(validation_window=100000)
# In[ ]: