203/main.py
2025-11-28 07:30:55 +00:00

188 lines
5.6 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[3]:
import pandas as pd
query = """
select final.CUSTOMER_NUMBER_main as Focal_id,
CAST(final.Cash_deposit_total AS DECIMAL(18, 2)) AS Cash_deposit_total,
final.Cash_deposit_count,
final.SEGMENT,
final.RISK,
final.SAR_FLAG
from
(
(
select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,
subquery.Cash_deposit_total,
subquery.Cash_deposit_count
from
(
select customer_number as CUSTOMER_NUMBER_1,
sum(transaction_amount) as Cash_deposit_total,
count(*) as Cash_deposit_count
from
(
select *
from {trans_data} trans_table
left join {acc_data} acc_table
on trans_table.benef_account_number = acc_table.account_number
) trans
where account_number not in ('None')
and transaction_desc = 'CASH RELATED TRANSACTION'
group by customer_number
) subquery
) main
left join
(
select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,
cd.SEGMENT,
cd.RISK,
case
when ad.SAR_FLAG is NULL then 'N'
else ad.SAR_FLAG
end as SAR_FLAG
from
(
select customer_number as CUSTOMER_NUMBER_3,
business_segment as SEGMENT,
case
when RISK_CLASSIFICATION = 1 then 'Low Risk'
when RISK_CLASSIFICATION = 2 then 'Medium Risk'
when RISK_CLASSIFICATION = 3 then 'High Risk'
else 'Unknown Risk'
end AS RISK
from {cust_data}
) cd
left join
(
select customer_number as CUSTOMER_NUMBER_4,
sar_flag as SAR_FLAG
from {alert_data}
) ad
on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4
) as cust_alert
on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main
) as final
"""
from tms_data_interface import SQLQueryInterface
class Scenario:
seq = SQLQueryInterface(schema="transactionschema")
def logic(self, **kwargs):
row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
cust_data="customer_data_v1",
acc_data="account_data_v1",
alert_data="alert_data_v1")
)
cols = ["Focal_id", "Cash_deposit_total", "Cash_deposit_count",
"Segment", "Risk", "SAR_FLAG"]
df = pd.DataFrame(row_list, columns = cols)
df["Cash_deposit_total"] = df["Cash_deposit_total"].astype(float)
return df
# In[6]:
# import pandas as pd
# query = """
# SELECT
# t.transaction_id,
# t.transaction_date,
# t.transaction_amount,
# t.transaction_desc,
# t.benef_account_number,
# -- Account data
# a.account_number,
# a.customer_number AS acc_customer_number,
# a.account_type,
# a.branch_code,
# -- Party data
# p.customer_number AS party_customer_number,
# p.customer_name,
# p.date_of_birth,
# p.nationality,
# p.business_segment,
# CASE
# WHEN p.risk_classification = 1 THEN 'Low Risk'
# WHEN p.risk_classification = 2 THEN 'Medium Risk'
# WHEN p.risk_classification = 3 THEN 'High Risk'
# ELSE 'Unknown Risk'
# END AS risk_level,
# -- Alert data
# COALESCE(al.sar_flag, 'N') AS sar_flag
# FROM {trans_data} t
# -- Join with account data on beneficiary account
# LEFT JOIN {acc_data} a
# ON t.benef_account_number = a.account_number
# -- Join with party/customer data using account's customer number
# LEFT JOIN {cust_data} p
# ON a.customer_number = p.customer_number
# -- Join with alert data using party's customer number
# LEFT JOIN {alert_data} al
# ON p.customer_number = al.customer_number
# WHERE a.account_number IS NOT NULL
# limit 100
# """
# from tms_data_interface import SQLQueryInterface
# class Scenario:
# seq = SQLQueryInterface(schema="transactionschema")
# def logic(self, **kwargs):
# row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
# cust_data="customer_data_v1",
# acc_data="account_data_v1",
# alert_data="alert_data_v1")
# )
# cols = [
# "transaction_id",
# "transaction_date",
# "transaction_amount",
# "transaction_desc",
# "benef_account_number",
# "account_number",
# "acc_customer_number",
# "account_type",
# "branch_code",
# "party_customer_number",
# "customer_name",
# "date_of_birth",
# "nationality",
# "business_segment",
# "risk_level",
# "sar_flag"
# ]
# df = pd.DataFrame(row_list, columns = cols)
# return df
# In[5]:
# sen = Scenario()
# sen.logic()
# In[ ]: