generated from dhairya/scenario_template
189 lines
7.3 KiB
Plaintext
189 lines
7.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d3b830ff-94b7-4596-b85a-320060180a6b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from datetime import datetime, timedelta\n",
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"from tms_data_interface import SQLQueryInterface\n",
|
|
"\n",
|
|
"def apply_sar_flag(df, var1, var2, var3, random_state=42):\n",
|
|
" \"\"\"\n",
|
|
" Apply percentile-based thresholds, split data into alerting and non-alerting,\n",
|
|
" flag random 10% of alerting data as 'Y', and merge back.\n",
|
|
"\n",
|
|
" Parameters:\n",
|
|
" df (pd.DataFrame): Input dataframe\n",
|
|
" var1 (str): First variable (for 50th percentile threshold)\n",
|
|
" var2 (str): Second variable (for 50th percentile threshold)\n",
|
|
" var3 (str): Third variable (for 90th percentile threshold)\n",
|
|
" random_state (int): Seed for reproducibility\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" pd.DataFrame: DataFrame with 'SAR_Flag' column added\n",
|
|
" \"\"\"\n",
|
|
"\n",
|
|
" # Calculate thresholds\n",
|
|
" th1 = np.percentile(df[var1].dropna(), 90)\n",
|
|
" th2 = np.percentile(df[var2].dropna(), 90)\n",
|
|
" th3 = np.percentile(df[var3].dropna(), 90)\n",
|
|
"\n",
|
|
" # Split into alerting and non-alerting\n",
|
|
" alerting = df[(df[var1] >= th1) &\n",
|
|
" (df[var2] >= th2) &\n",
|
|
" (df[var3] >= th3)].copy()\n",
|
|
"\n",
|
|
" non_alerting = df.loc[~df.index.isin(alerting.index)].copy()\n",
|
|
"\n",
|
|
" # Assign SAR_Flag = 'N' for non-alerting\n",
|
|
" non_alerting['SAR_FLAG'] = 'N'\n",
|
|
"\n",
|
|
" # Assign SAR_Flag for alerting data\n",
|
|
" alerting['SAR_FLAG'] = 'N'\n",
|
|
" n_y = int(len(alerting) * 0.1) # 10% count\n",
|
|
" if n_y > 0:\n",
|
|
" y_indices = alerting.sample(n=n_y, random_state=random_state).index\n",
|
|
" alerting.loc[y_indices, 'SAR_FLAG'] = 'Y'\n",
|
|
"\n",
|
|
" # Merge back and preserve original order\n",
|
|
" final_df = pd.concat([alerting, non_alerting]).sort_index()\n",
|
|
"\n",
|
|
" return final_df\n",
|
|
"\n",
|
|
"query = \"\"\"\n",
|
|
"WITH time_windows AS (\n",
|
|
" SELECT\n",
|
|
" -- End time is the current trade time\n",
|
|
" date_time AS end_time,\n",
|
|
"\n",
|
|
" -- Subtract seconds from the end_time using date_add() with negative integer interval\n",
|
|
" date_add('second', -{time_window_s}, date_time) AS start_time,\n",
|
|
"\n",
|
|
" -- Trade details\n",
|
|
" trade_price,\n",
|
|
" trade_volume,\n",
|
|
" trader_id,\n",
|
|
"\n",
|
|
" -- Calculate minimum price within the time window\n",
|
|
" MIN(trade_price) OVER (\n",
|
|
" ORDER BY date_time \n",
|
|
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
|
" ) AS min_price,\n",
|
|
"\n",
|
|
" -- Calculate maximum price within the time window\n",
|
|
" MAX(trade_price) OVER (\n",
|
|
" ORDER BY date_time \n",
|
|
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
|
" ) AS max_price,\n",
|
|
"\n",
|
|
" -- Calculate total trade volume within the time window\n",
|
|
" SUM(trade_volume) OVER ( \n",
|
|
" ORDER BY date_time \n",
|
|
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
|
" ) AS total_volume,\n",
|
|
"\n",
|
|
" -- Calculate participant's trade volume within the time window\n",
|
|
" SUM(CASE WHEN trader_id = trader_id THEN trade_volume ELSE 0 END) OVER (\n",
|
|
" PARTITION BY trader_id \n",
|
|
" ORDER BY date_time \n",
|
|
" RANGE BETWEEN INTERVAL '{time_window_s}' SECOND PRECEDING AND CURRENT ROW\n",
|
|
" ) AS participant_volume\n",
|
|
" FROM\n",
|
|
" {trade_data_1b}\n",
|
|
")\n",
|
|
"SELECT\n",
|
|
" -- Select the time window details\n",
|
|
" start_time,\n",
|
|
" end_time,\n",
|
|
"\n",
|
|
" -- Select the participant (trader) ID\n",
|
|
" trader_id AS \"Participant\",\n",
|
|
"\n",
|
|
" -- Select the calculated min and max prices\n",
|
|
" min_price,\n",
|
|
" max_price,\n",
|
|
"\n",
|
|
" -- Calculate the price change percentage\n",
|
|
" (max_price - min_price) / NULLIF(min_price, 0) * 100 AS \"Price Change (%)\",\n",
|
|
"\n",
|
|
" -- Calculate the participant's volume as a percentage of total volume\n",
|
|
" (participant_volume / NULLIF(total_volume, 0)) * 100 AS \"Volume (%)\",\n",
|
|
"\n",
|
|
" -- Participant volume\n",
|
|
" participant_volume,\n",
|
|
"\n",
|
|
" -- Select the total volume within the window\n",
|
|
" total_volume AS \"Total Volume\"\n",
|
|
"FROM\n",
|
|
" time_windows\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"\n",
|
|
"from tms_data_interface import SQLQueryInterface\n",
|
|
"\n",
|
|
"class Scenario:\n",
|
|
" seq = SQLQueryInterface(schema=\"trade_schema\")\n",
|
|
" def logic(self, **kwargs):\n",
|
|
" validation_window = kwargs.get('validation_window', 300000)\n",
|
|
" time_window_s = int(validation_window/1000)\n",
|
|
" query_start_time = datetime.now()\n",
|
|
" print(\"Query start time :\",query_start_time)\n",
|
|
" row_list = self.seq.execute_raw(query.format(trade_data_1b=\"trade_10m_v3\",\n",
|
|
" time_window_s = time_window_s)\n",
|
|
" )\n",
|
|
" cols = [\n",
|
|
" 'START_DATE_TIME',\n",
|
|
" 'END_DATE_TIME',\n",
|
|
" 'Focal_id',\n",
|
|
" 'MIN_PRICE',\n",
|
|
" 'MAX_PRICE',\n",
|
|
" 'PRICE_CHANGE_PCT',\n",
|
|
" 'PARTICIPANT_VOLUME_PCT',\n",
|
|
" 'PARTICIPANT_VOLUME',\n",
|
|
" 'TOTAL_VOLUME',\n",
|
|
" ]\n",
|
|
" final_scenario_df = pd.DataFrame(row_list, columns = cols)\n",
|
|
" final_scenario_df['PARTICIPANT_VOLUME_PCT'] = final_scenario_df['PARTICIPANT_VOLUME']/\\\n",
|
|
" final_scenario_df['TOTAL_VOLUME'] * 100\n",
|
|
" final_scenario_df['Segment'] = 'Default'\n",
|
|
" # final_scenario_df['SAR_FLAG'] = 'N'\n",
|
|
" final_scenario_df['Risk'] = 'Medium Risk'\n",
|
|
" final_scenario_df.dropna(inplace=True)\n",
|
|
" final_scenario_df = apply_sar_flag(final_scenario_df,\n",
|
|
" 'PRICE_CHANGE_PCT',\n",
|
|
" 'PARTICIPANT_VOLUME_PCT',\n",
|
|
" 'TOTAL_VOLUME',\n",
|
|
" random_state=42)\n",
|
|
" # final_scenario_df['RUN_DATE'] = final_scenario_df['END_DATE']\n",
|
|
" return final_scenario_df\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|