155/main.py
2025-05-26 05:58:06 +00:00

277 lines
8.4 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
# import pandas as pd
# query = """
# select final.CUSTOMER_NUMBER_main as Focal_id,
# CAST(final.Cash_deposit_total AS DECIMAL(18, 2)) AS Cash_deposit_total,
# final.Cash_deposit_count,
# final.SEGMENT,
# final.RISK,
# final.SAR_FLAG
# from
# (
# (
# select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,
# subquery.Cash_deposit_total,
# subquery.Cash_deposit_count
# from
# (
# select customer_number as CUSTOMER_NUMBER_1,
# sum(transaction_amount) as Cash_deposit_total,
# count(*) as Cash_deposit_count
# from
# (
# select *
# from {trans_data} trans_table
# left join {acc_data} acc_table
# on trans_table.benef_account_number = acc_table.account_number
# ) trans
# where account_number not in ('None')
# and transaction_desc = 'CASH RELATED TRANSACTION'
# group by customer_number
# ) subquery
# ) main
# left join
# (
# select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,
# cd.SEGMENT,
# cd.RISK,
# case
# when ad.SAR_FLAG is NULL then 'N'
# else ad.SAR_FLAG
# end as SAR_FLAG
# from
# (
# select customer_number as CUSTOMER_NUMBER_3,
# business_segment as SEGMENT,
# case
# when RISK_CLASSIFICATION = 1 then 'Low Risk'
# when RISK_CLASSIFICATION = 2 then 'Medium Risk'
# when RISK_CLASSIFICATION = 3 then 'High Risk'
# else 'Unknown Risk'
# end AS RISK
# from {cust_data}
# ) cd
# left join
# (
# select customer_number as CUSTOMER_NUMBER_4,
# sar_flag as SAR_FLAG
# from {alert_data}
# ) ad
# on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4
# ) as cust_alert
# on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main
# ) as final
# """
# from tms_data_interface import SQLQueryInterface
# class Scenario:
# seq = SQLQueryInterface(schema="transactionschema")
# def logic(self, **kwargs):
# row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
# cust_data="customer_data_v1",
# acc_data="account_data_v1",
# alert_data="alert_data_v1")
# )
# cols = ["Focal_id", "Cash_deposit_total", "Cash_deposit_count",
# "Segment", "Risk", "SAR_FLAG"]
# df = pd.DataFrame(row_list, columns = cols)
# df["Cash_deposit_total"] = df["Cash_deposit_total"].astype(float)
# return df
# In[41]:
import pandas as pd
import numpy as np
from tms_data_interface import SQLQueryInterface
# In[42]:
query2 = """
SELECT *
FROM percentile_dist
"""
# In[43]:
query = """
SELECT
t.transaction_key,
t.transaction_date,
t.transaction_amount,
t.transaction_desc,
t.benef_account_number,
-- Account data
a.account_number,
a.customer_number AS acc_customer_number,
-- Party data
p.customer_number AS party_customer_number,
p.customer_name,
p.date_of_birth,
p.nationality,
p.business_segment,
CASE
WHEN p.risk_classification = 1 THEN 'Low Risk'
WHEN p.risk_classification = 2 THEN 'Medium Risk'
WHEN p.risk_classification = 3 THEN 'High Risk'
ELSE 'Unknown Risk'
END AS risk_level,
-- Alert data
COALESCE(al.sar_flag, 'N') AS sar_flag
FROM {trans_data} t
-- Join with account data on beneficiary account
LEFT JOIN {acc_data} a
ON t.benef_account_number = a.account_number
-- Join with party/customer data using account's customer number
LEFT JOIN {cust_data} p
ON a.customer_number = p.customer_number
-- Join with alert data using party's customer number
LEFT JOIN {alert_data} al
ON p.customer_number = al.customer_number
WHERE a.account_number IS NOT NULL
"""
# In[44]:
def trx_count_sum_groupwise(data_filt_partywise):
data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
'MIN_LIMIT', 'PCT_RANGE'])
trxns = data_filt_partywise['transaction_amount'].values
pct_range = data_filt_partywise['PCT_RANGE'].max()
min_value = data_filt_partywise['MIN_LIMIT'].max()
trxns = trxns[trxns >= min_value]
if len(trxns) > 0:
min_value = trxns[0]
group_count = 0
while len(trxns) > 0:
max_value = min_value + (pct_range * 0.01 * min_value)
mask = np.logical_and(trxns >= min_value, trxns <= max_value)
group_filter_trx = trxns[mask]
trx_count = len(group_filter_trx)
trx_sum = np.sum(group_filter_trx)
group_count += 1
groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
min_value, pct_range]
trxns = trxns[trxns > max_value]
if len(trxns) > 0:
min_value = trxns[0]
return groupeddata.to_dict('list')
# ---------------------------
# Function 4: Run scenario 9
# ---------------------------
def scenario9_data(data1):
grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
trx_count_sum_groupwise).reset_index()
df_list = []
for i in grouped.index:
df_party = pd.DataFrame(grouped.iloc[i, -1])
df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
df_list.append(df_party)
final_df = pd.concat(df_list, ignore_index=True)
Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
return final_df
# In[45]:
seq = SQLQueryInterface(schema="transactionschema")
data = seq.execute_raw(query2)
Columns = ['point_of_percentile', 'value', 'total_event',
'true_positive', 'false_positive', 'tpsar']
percent_dist = pd.DataFrame(data,columns = Columns)
# In[52]:
# round(int(percent_dist[percent_dist['point_of_percentile']\
# == 75]['value'].iloc[0])/100)*100
# In[53]:
class Scenario:
seq = SQLQueryInterface(schema="transactionschema")
def logic(self, **kwargs):
row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
cust_data="customer_data_v1",
acc_data="account_data_v1",
alert_data="alert_data_v1")
)
cols = [
"transaction_key",
"transaction_date",
"transaction_amount",
"transaction_desc",
"benef_account_number",
"account_number",
"acc_customer_number",
"Focal_id",
"customer_name",
"date_of_birth",
"nationality",
"Segment",
"Risk",
"SAR_FLAG"
]
df = pd.DataFrame(row_list, columns = cols)
df['Segment'] = 'SME'
df['MIN_LIMIT'] = round(int(percent_dist[percent_dist['point_of_percentile']\
== 75]['value'].iloc[0])/100)*100
df['PCT_RANGE'] = 20
scenario_data = scenario9_data(df)
return scenario_data
# In[55]:
# sen = Scenario()
# sen.logic()