Initial commit

This commit is contained in:
user_client2024 2025-05-23 15:12:51 +00:00
commit 64ece05d23
3 changed files with 843 additions and 0 deletions

View File

@ -0,0 +1,299 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# import pandas as pd\n",
"\n",
"# query = \"\"\"\n",
"# select final.CUSTOMER_NUMBER_main as Focal_id,\n",
"# CAST(final.Cash_deposit_total AS DECIMAL(18, 2)) AS Cash_deposit_total,\n",
"# final.Cash_deposit_count,\n",
"# final.SEGMENT,\n",
"# final.RISK,\n",
"# final.SAR_FLAG\n",
"# from \n",
"# (\n",
"# (\n",
"# select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n",
"# subquery.Cash_deposit_total,\n",
"# subquery.Cash_deposit_count\n",
"# from \n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_1, \n",
"# sum(transaction_amount) as Cash_deposit_total, \n",
"# count(*) as Cash_deposit_count\n",
"# from \n",
"# (\n",
"# select * \n",
"# from {trans_data} trans_table \n",
"# left join {acc_data} acc_table\n",
"# on trans_table.benef_account_number = acc_table.account_number\n",
"# ) trans\n",
"# where account_number not in ('None')\n",
"# and transaction_desc = 'CASH RELATED TRANSACTION'\n",
"# group by customer_number\n",
"# ) subquery\n",
"# ) main \n",
"# left join \n",
"# (\n",
"# select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n",
"# cd.SEGMENT,\n",
"# cd.RISK,\n",
"# case\n",
"# when ad.SAR_FLAG is NULL then 'N'\n",
"# else ad.SAR_FLAG\n",
"# end as SAR_FLAG \n",
"# from\n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_3, \n",
"# business_segment as SEGMENT,\n",
"# case\n",
"# when RISK_CLASSIFICATION = 1 then 'Low Risk'\n",
"# when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n",
"# when RISK_CLASSIFICATION = 3 then 'High Risk'\n",
"# else 'Unknown Risk'\n",
"# end AS RISK\n",
"# from {cust_data}\n",
"# ) cd \n",
"# left join\n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_4, \n",
"# sar_flag as SAR_FLAG\n",
"# from {alert_data}\n",
"# ) ad \n",
"# on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n",
"# ) as cust_alert\n",
"# on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n",
"# ) as final\n",
"# \"\"\"\n",
"\n",
"# from tms_data_interface import SQLQueryInterface\n",
"\n",
"# class Scenario:\n",
"# seq = SQLQueryInterface(schema=\"transactionschema\")\n",
"\n",
"# def logic(self, **kwargs):\n",
"# row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
"# cust_data=\"customer_data_v1\",\n",
"# acc_data=\"account_data_v1\",\n",
"# alert_data=\"alert_data_v1\")\n",
"# )\n",
"# cols = [\"Focal_id\", \"Cash_deposit_total\", \"Cash_deposit_count\",\n",
"# \"Segment\", \"Risk\", \"SAR_FLAG\"]\n",
"# df = pd.DataFrame(row_list, columns = cols)\n",
"# df[\"Cash_deposit_total\"] = df[\"Cash_deposit_total\"].astype(float)\n",
"# return df"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "69d6771d-be1c-4ae1-802a-3ba7b2e8c5fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"query = \"\"\"\n",
" SELECT \n",
" t.transaction_key,\n",
" t.transaction_date,\n",
" t.transaction_amount,\n",
" t.transaction_desc,\n",
" t.benef_account_number,\n",
"\n",
" -- Account data\n",
" a.account_number,\n",
" a.customer_number AS acc_customer_number,\n",
"\n",
" -- Party data\n",
" p.customer_number AS party_customer_number,\n",
" p.customer_name,\n",
" p.date_of_birth,\n",
" p.nationality,\n",
" p.business_segment,\n",
" CASE\n",
" WHEN p.risk_classification = 1 THEN 'Low Risk'\n",
" WHEN p.risk_classification = 2 THEN 'Medium Risk'\n",
" WHEN p.risk_classification = 3 THEN 'High Risk'\n",
" ELSE 'Unknown Risk'\n",
" END AS risk_level,\n",
"\n",
" -- Alert data\n",
" COALESCE(al.sar_flag, 'N') AS sar_flag\n",
"\n",
" FROM {trans_data} t\n",
"\n",
" -- Join with account data on beneficiary account\n",
" LEFT JOIN {acc_data} a\n",
" ON t.benef_account_number = a.account_number\n",
"\n",
" -- Join with party/customer data using account's customer number\n",
" LEFT JOIN {cust_data} p\n",
" ON a.customer_number = p.customer_number\n",
"\n",
" -- Join with alert data using party's customer number\n",
" LEFT JOIN {alert_data} al\n",
" ON p.customer_number = al.customer_number\n",
"\n",
" WHERE a.account_number IS NOT NULL\n",
" limit 100\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "82c2152f-513c-4fde-a4a9-6ee3a01ef897",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def trx_count_sum_groupwise(data_filt_partywise): \n",
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
" \n",
" trxns = data_filt_partywise['transaction_amount'].values\n",
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
"\n",
" trxns = trxns[trxns >= min_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" group_count = 0\n",
" while len(trxns) > 0:\n",
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
" group_filter_trx = trxns[mask]\n",
" trx_count = len(group_filter_trx)\n",
" trx_sum = np.sum(group_filter_trx)\n",
" group_count += 1\n",
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
" min_value, pct_range]\n",
" trxns = trxns[trxns > max_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" return groupeddata.to_dict('list')\n",
"\n",
"# ---------------------------\n",
"# Function 4: Run scenario 9\n",
"# ---------------------------\n",
"def scenario9_data(data1): \n",
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
" trx_count_sum_groupwise).reset_index()\n",
"\n",
" df_list = []\n",
" for i in grouped.index:\n",
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
" df_list.append(df_party)\n",
"\n",
" final_df = pd.concat(df_list, ignore_index=True) \n",
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
" \n",
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
" \n",
" return final_df\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
"class Scenario:\n",
" seq = SQLQueryInterface(schema=\"transactionschema\")\n",
"\n",
" def logic(self, **kwargs):\n",
" row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
" cust_data=\"customer_data_v1\",\n",
" acc_data=\"account_data_v1\",\n",
" alert_data=\"alert_data_v1\")\n",
" )\n",
" cols = [\n",
" \"transaction_key\",\n",
" \"transaction_date\",\n",
" \"transaction_amount\",\n",
" \"transaction_desc\",\n",
" \"benef_account_number\",\n",
" \"account_number\",\n",
" \"acc_customer_number\",\n",
" \"Focal_id\",\n",
" \"customer_name\",\n",
" \"date_of_birth\",\n",
" \"nationality\",\n",
" \"Segment\",\n",
" \"Risk\", \n",
" \"SAR_FLAG\"\n",
" ]\n",
" df = pd.DataFrame(row_list, columns = cols)\n",
" df['Segment'] = 'SME'\n",
" df['MIN_LIMIT'] = 50000\n",
" df['PCT_RANGE'] = 20\n",
" \n",
" scenario_data = scenario9_data(df)\n",
" \n",
" return scenario_data"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1f20337b-8116-47e5-8743-1ba41e2df819",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# sen = Scenario()\n",
"# sen.logic()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

299
main.ipynb Normal file
View File

@ -0,0 +1,299 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e706cfb0-2234-4c4c-95d8-d1968f656aa0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# import pandas as pd\n",
"\n",
"# query = \"\"\"\n",
"# select final.CUSTOMER_NUMBER_main as Focal_id,\n",
"# CAST(final.Cash_deposit_total AS DECIMAL(18, 2)) AS Cash_deposit_total,\n",
"# final.Cash_deposit_count,\n",
"# final.SEGMENT,\n",
"# final.RISK,\n",
"# final.SAR_FLAG\n",
"# from \n",
"# (\n",
"# (\n",
"# select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,\n",
"# subquery.Cash_deposit_total,\n",
"# subquery.Cash_deposit_count\n",
"# from \n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_1, \n",
"# sum(transaction_amount) as Cash_deposit_total, \n",
"# count(*) as Cash_deposit_count\n",
"# from \n",
"# (\n",
"# select * \n",
"# from {trans_data} trans_table \n",
"# left join {acc_data} acc_table\n",
"# on trans_table.benef_account_number = acc_table.account_number\n",
"# ) trans\n",
"# where account_number not in ('None')\n",
"# and transaction_desc = 'CASH RELATED TRANSACTION'\n",
"# group by customer_number\n",
"# ) subquery\n",
"# ) main \n",
"# left join \n",
"# (\n",
"# select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,\n",
"# cd.SEGMENT,\n",
"# cd.RISK,\n",
"# case\n",
"# when ad.SAR_FLAG is NULL then 'N'\n",
"# else ad.SAR_FLAG\n",
"# end as SAR_FLAG \n",
"# from\n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_3, \n",
"# business_segment as SEGMENT,\n",
"# case\n",
"# when RISK_CLASSIFICATION = 1 then 'Low Risk'\n",
"# when RISK_CLASSIFICATION = 2 then 'Medium Risk'\n",
"# when RISK_CLASSIFICATION = 3 then 'High Risk'\n",
"# else 'Unknown Risk'\n",
"# end AS RISK\n",
"# from {cust_data}\n",
"# ) cd \n",
"# left join\n",
"# (\n",
"# select customer_number as CUSTOMER_NUMBER_4, \n",
"# sar_flag as SAR_FLAG\n",
"# from {alert_data}\n",
"# ) ad \n",
"# on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4\n",
"# ) as cust_alert\n",
"# on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main\n",
"# ) as final\n",
"# \"\"\"\n",
"\n",
"# from tms_data_interface import SQLQueryInterface\n",
"\n",
"# class Scenario:\n",
"# seq = SQLQueryInterface(schema=\"transactionschema\")\n",
"\n",
"# def logic(self, **kwargs):\n",
"# row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
"# cust_data=\"customer_data_v1\",\n",
"# acc_data=\"account_data_v1\",\n",
"# alert_data=\"alert_data_v1\")\n",
"# )\n",
"# cols = [\"Focal_id\", \"Cash_deposit_total\", \"Cash_deposit_count\",\n",
"# \"Segment\", \"Risk\", \"SAR_FLAG\"]\n",
"# df = pd.DataFrame(row_list, columns = cols)\n",
"# df[\"Cash_deposit_total\"] = df[\"Cash_deposit_total\"].astype(float)\n",
"# return df"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "69d6771d-be1c-4ae1-802a-3ba7b2e8c5fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"query = \"\"\"\n",
" SELECT \n",
" t.transaction_key,\n",
" t.transaction_date,\n",
" t.transaction_amount,\n",
" t.transaction_desc,\n",
" t.benef_account_number,\n",
"\n",
" -- Account data\n",
" a.account_number,\n",
" a.customer_number AS acc_customer_number,\n",
"\n",
" -- Party data\n",
" p.customer_number AS party_customer_number,\n",
" p.customer_name,\n",
" p.date_of_birth,\n",
" p.nationality,\n",
" p.business_segment,\n",
" CASE\n",
" WHEN p.risk_classification = 1 THEN 'Low Risk'\n",
" WHEN p.risk_classification = 2 THEN 'Medium Risk'\n",
" WHEN p.risk_classification = 3 THEN 'High Risk'\n",
" ELSE 'Unknown Risk'\n",
" END AS risk_level,\n",
"\n",
" -- Alert data\n",
" COALESCE(al.sar_flag, 'N') AS sar_flag\n",
"\n",
" FROM {trans_data} t\n",
"\n",
" -- Join with account data on beneficiary account\n",
" LEFT JOIN {acc_data} a\n",
" ON t.benef_account_number = a.account_number\n",
"\n",
" -- Join with party/customer data using account's customer number\n",
" LEFT JOIN {cust_data} p\n",
" ON a.customer_number = p.customer_number\n",
"\n",
" -- Join with alert data using party's customer number\n",
" LEFT JOIN {alert_data} al\n",
" ON p.customer_number = al.customer_number\n",
"\n",
" WHERE a.account_number IS NOT NULL\n",
" limit 100\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "82c2152f-513c-4fde-a4a9-6ee3a01ef897",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def trx_count_sum_groupwise(data_filt_partywise): \n",
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
" \n",
" trxns = data_filt_partywise['transaction_amount'].values\n",
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
"\n",
" trxns = trxns[trxns >= min_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" group_count = 0\n",
" while len(trxns) > 0:\n",
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
" group_filter_trx = trxns[mask]\n",
" trx_count = len(group_filter_trx)\n",
" trx_sum = np.sum(group_filter_trx)\n",
" group_count += 1\n",
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
" min_value, pct_range]\n",
" trxns = trxns[trxns > max_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" return groupeddata.to_dict('list')\n",
"\n",
"# ---------------------------\n",
"# Function 4: Run scenario 9\n",
"# ---------------------------\n",
"def scenario9_data(data1): \n",
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
" trx_count_sum_groupwise).reset_index()\n",
"\n",
" df_list = []\n",
" for i in grouped.index:\n",
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
" df_list.append(df_party)\n",
"\n",
" final_df = pd.concat(df_list, ignore_index=True) \n",
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
" \n",
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
" \n",
" return final_df\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
"class Scenario:\n",
" seq = SQLQueryInterface(schema=\"transactionschema\")\n",
"\n",
" def logic(self, **kwargs):\n",
" row_list = self.seq.execute_raw(query.format(trans_data=\"transaction10m\",\n",
" cust_data=\"customer_data_v1\",\n",
" acc_data=\"account_data_v1\",\n",
" alert_data=\"alert_data_v1\")\n",
" )\n",
" cols = [\n",
" \"transaction_key\",\n",
" \"transaction_date\",\n",
" \"transaction_amount\",\n",
" \"transaction_desc\",\n",
" \"benef_account_number\",\n",
" \"account_number\",\n",
" \"acc_customer_number\",\n",
" \"Focal_id\",\n",
" \"customer_name\",\n",
" \"date_of_birth\",\n",
" \"nationality\",\n",
" \"Segment\",\n",
" \"Risk\", \n",
" \"SAR_FLAG\"\n",
" ]\n",
" df = pd.DataFrame(row_list, columns = cols)\n",
" df['Segment'] = 'SME'\n",
" df['MIN_LIMIT'] = 50000\n",
" df['PCT_RANGE'] = 20\n",
" \n",
" scenario_data = scenario9_data(df)\n",
" \n",
" return scenario_data"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1f20337b-8116-47e5-8743-1ba41e2df819",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# sen = Scenario()\n",
"# sen.logic()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

245
main.py Normal file
View File

@ -0,0 +1,245 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# import pandas as pd
# query = """
# select final.CUSTOMER_NUMBER_main as Focal_id,
# CAST(final.Cash_deposit_total AS DECIMAL(18, 2)) AS Cash_deposit_total,
# final.Cash_deposit_count,
# final.SEGMENT,
# final.RISK,
# final.SAR_FLAG
# from
# (
# (
# select subquery.CUSTOMER_NUMBER_1 as CUSTOMER_NUMBER_main,
# subquery.Cash_deposit_total,
# subquery.Cash_deposit_count
# from
# (
# select customer_number as CUSTOMER_NUMBER_1,
# sum(transaction_amount) as Cash_deposit_total,
# count(*) as Cash_deposit_count
# from
# (
# select *
# from {trans_data} trans_table
# left join {acc_data} acc_table
# on trans_table.benef_account_number = acc_table.account_number
# ) trans
# where account_number not in ('None')
# and transaction_desc = 'CASH RELATED TRANSACTION'
# group by customer_number
# ) subquery
# ) main
# left join
# (
# select cd.CUSTOMER_NUMBER_3 as CUSTOMER_NUMBER_cust,
# cd.SEGMENT,
# cd.RISK,
# case
# when ad.SAR_FLAG is NULL then 'N'
# else ad.SAR_FLAG
# end as SAR_FLAG
# from
# (
# select customer_number as CUSTOMER_NUMBER_3,
# business_segment as SEGMENT,
# case
# when RISK_CLASSIFICATION = 1 then 'Low Risk'
# when RISK_CLASSIFICATION = 2 then 'Medium Risk'
# when RISK_CLASSIFICATION = 3 then 'High Risk'
# else 'Unknown Risk'
# end AS RISK
# from {cust_data}
# ) cd
# left join
# (
# select customer_number as CUSTOMER_NUMBER_4,
# sar_flag as SAR_FLAG
# from {alert_data}
# ) ad
# on cd.CUSTOMER_NUMBER_3 = ad.CUSTOMER_NUMBER_4
# ) as cust_alert
# on cust_alert.CUSTOMER_NUMBER_cust = main.CUSTOMER_NUMBER_main
# ) as final
# """
# from tms_data_interface import SQLQueryInterface
# class Scenario:
# seq = SQLQueryInterface(schema="transactionschema")
# def logic(self, **kwargs):
# row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
# cust_data="customer_data_v1",
# acc_data="account_data_v1",
# alert_data="alert_data_v1")
# )
# cols = ["Focal_id", "Cash_deposit_total", "Cash_deposit_count",
# "Segment", "Risk", "SAR_FLAG"]
# df = pd.DataFrame(row_list, columns = cols)
# df["Cash_deposit_total"] = df["Cash_deposit_total"].astype(float)
# return df
# In[15]:
import pandas as pd
import numpy as np
query = """
SELECT
t.transaction_key,
t.transaction_date,
t.transaction_amount,
t.transaction_desc,
t.benef_account_number,
-- Account data
a.account_number,
a.customer_number AS acc_customer_number,
-- Party data
p.customer_number AS party_customer_number,
p.customer_name,
p.date_of_birth,
p.nationality,
p.business_segment,
CASE
WHEN p.risk_classification = 1 THEN 'Low Risk'
WHEN p.risk_classification = 2 THEN 'Medium Risk'
WHEN p.risk_classification = 3 THEN 'High Risk'
ELSE 'Unknown Risk'
END AS risk_level,
-- Alert data
COALESCE(al.sar_flag, 'N') AS sar_flag
FROM {trans_data} t
-- Join with account data on beneficiary account
LEFT JOIN {acc_data} a
ON t.benef_account_number = a.account_number
-- Join with party/customer data using account's customer number
LEFT JOIN {cust_data} p
ON a.customer_number = p.customer_number
-- Join with alert data using party's customer number
LEFT JOIN {alert_data} al
ON p.customer_number = al.customer_number
WHERE a.account_number IS NOT NULL
limit 100
"""
# In[20]:
def trx_count_sum_groupwise(data_filt_partywise):
data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
'MIN_LIMIT', 'PCT_RANGE'])
trxns = data_filt_partywise['transaction_amount'].values
pct_range = data_filt_partywise['PCT_RANGE'].max()
min_value = data_filt_partywise['MIN_LIMIT'].max()
trxns = trxns[trxns >= min_value]
if len(trxns) > 0:
min_value = trxns[0]
group_count = 0
while len(trxns) > 0:
max_value = min_value + (pct_range * 0.01 * min_value)
mask = np.logical_and(trxns >= min_value, trxns <= max_value)
group_filter_trx = trxns[mask]
trx_count = len(group_filter_trx)
trx_sum = np.sum(group_filter_trx)
group_count += 1
groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
min_value, pct_range]
trxns = trxns[trxns > max_value]
if len(trxns) > 0:
min_value = trxns[0]
return groupeddata.to_dict('list')
# ---------------------------
# Function 4: Run scenario 9
# ---------------------------
def scenario9_data(data1):
grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
trx_count_sum_groupwise).reset_index()
df_list = []
for i in grouped.index:
df_party = pd.DataFrame(grouped.iloc[i, -1])
df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
df_list.append(df_party)
final_df = pd.concat(df_list, ignore_index=True)
Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
return final_df
# In[17]:
from tms_data_interface import SQLQueryInterface
class Scenario:
seq = SQLQueryInterface(schema="transactionschema")
def logic(self, **kwargs):
row_list = self.seq.execute_raw(query.format(trans_data="transaction10m",
cust_data="customer_data_v1",
acc_data="account_data_v1",
alert_data="alert_data_v1")
)
cols = [
"transaction_key",
"transaction_date",
"transaction_amount",
"transaction_desc",
"benef_account_number",
"account_number",
"acc_customer_number",
"Focal_id",
"customer_name",
"date_of_birth",
"nationality",
"Segment",
"Risk",
"SAR_FLAG"
]
df = pd.DataFrame(row_list, columns = cols)
df['Segment'] = 'SME'
df['MIN_LIMIT'] = 50000
df['PCT_RANGE'] = 20
scenario_data = scenario9_data(df)
return scenario_data
# In[19]:
# sen = Scenario()
# sen.logic()