System save at 23/05/2025 20:38 by user_client2024

This commit is contained in:
user_client2024 2025-05-23 15:08:56 +00:00
parent 96eb5906ec
commit 383071036a
3 changed files with 243 additions and 35 deletions

View File

@ -94,15 +94,15 @@
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"execution_count": 11,
"id": "69d6771d-be1c-4ae1-802a-3ba7b2e8c5fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import numpy as np\n",
"query = \"\"\"\n",
" SELECT \n",
" t.transaction_key,\n",
@ -146,7 +146,83 @@
" ON p.customer_number = al.customer_number\n",
"\n",
" WHERE a.account_number IS NOT NULL\n",
"\"\"\"\n",
" limit 100\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "82c2152f-513c-4fde-a4a9-6ee3a01ef897",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def trx_count_sum_groupwise(data_filt_partywise): \n",
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
" \n",
" trxns = data_filt_partywise['transaction_amount'].values\n",
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
"\n",
" trxns = trxns[trxns >= min_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" group_count = 0\n",
" while len(trxns) > 0:\n",
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
" group_filter_trx = trxns[mask]\n",
" trx_count = len(group_filter_trx)\n",
" trx_sum = np.sum(group_filter_trx)\n",
" group_count += 1\n",
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
" min_value, pct_range]\n",
" trxns = trxns[trxns > max_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" return groupeddata.to_dict('list')\n",
"\n",
"# ---------------------------\n",
"# Function 4: Run scenario 9\n",
"# ---------------------------\n",
"def scenario9_data(data1): \n",
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
" trx_count_sum_groupwise).reset_index()\n",
"\n",
" df_list = []\n",
" for i in grouped.index:\n",
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
" df_list.append(df_party)\n",
"\n",
" final_df = pd.concat(df_list, ignore_index=True) \n",
" Segment = final_df.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
" Risk = final_df.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
" SAR_FLAG = final_df.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
" \n",
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
" \n",
" return final_df\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
@ -177,7 +253,12 @@
" ]\n",
" df = pd.DataFrame(row_list, columns = cols)\n",
" df['Segment'] = 'SME'\n",
" return df"
" df['MIN_LIMIT'] = 50000\n",
" df['PCT_RANGE'] = 20\n",
" \n",
" scenario_data = scenario9_data(df)\n",
" \n",
" return scenario_data"
]
},
{
@ -192,14 +273,6 @@
"# sen = Scenario()\n",
"# sen.logic()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6de62b37-00d1-4c88-b27b-9a70e05add91",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@ -94,15 +94,15 @@
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"execution_count": 11,
"id": "69d6771d-be1c-4ae1-802a-3ba7b2e8c5fb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import numpy as np\n",
"query = \"\"\"\n",
" SELECT \n",
" t.transaction_key,\n",
@ -146,7 +146,83 @@
" ON p.customer_number = al.customer_number\n",
"\n",
" WHERE a.account_number IS NOT NULL\n",
"\"\"\"\n",
" limit 100\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "82c2152f-513c-4fde-a4a9-6ee3a01ef897",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def trx_count_sum_groupwise(data_filt_partywise): \n",
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
" \n",
" trxns = data_filt_partywise['transaction_amount'].values\n",
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
"\n",
" trxns = trxns[trxns >= min_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" group_count = 0\n",
" while len(trxns) > 0:\n",
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
" group_filter_trx = trxns[mask]\n",
" trx_count = len(group_filter_trx)\n",
" trx_sum = np.sum(group_filter_trx)\n",
" group_count += 1\n",
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
" min_value, pct_range]\n",
" trxns = trxns[trxns > max_value]\n",
" if len(trxns) > 0:\n",
" min_value = trxns[0]\n",
"\n",
" return groupeddata.to_dict('list')\n",
"\n",
"# ---------------------------\n",
"# Function 4: Run scenario 9\n",
"# ---------------------------\n",
"def scenario9_data(data1): \n",
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
" trx_count_sum_groupwise).reset_index()\n",
"\n",
" df_list = []\n",
" for i in grouped.index:\n",
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
" df_list.append(df_party)\n",
"\n",
" final_df = pd.concat(df_list, ignore_index=True) \n",
" Segment = final_df.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
" Risk = final_df.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
" SAR_FLAG = final_df.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
" \n",
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
" \n",
" return final_df\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b6c85de2-6a47-4109-8885-c138c289ec25",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"\n",
"from tms_data_interface import SQLQueryInterface\n",
"\n",
@ -177,7 +253,12 @@
" ]\n",
" df = pd.DataFrame(row_list, columns = cols)\n",
" df['Segment'] = 'SME'\n",
" return df"
" df['MIN_LIMIT'] = 50000\n",
" df['PCT_RANGE'] = 20\n",
" \n",
" scenario_data = scenario9_data(df)\n",
" \n",
" return scenario_data"
]
},
{
@ -192,14 +273,6 @@
"# sen = Scenario()\n",
"# sen.logic()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6de62b37-00d1-4c88-b27b-9a70e05add91",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

80
main.py
View File

@ -87,11 +87,11 @@
# return df
# In[5]:
# In[11]:
import pandas as pd
import numpy as np
query = """
SELECT
t.transaction_key,
@ -135,8 +135,71 @@ query = """
ON p.customer_number = al.customer_number
WHERE a.account_number IS NOT NULL
limit 100
"""
# In[12]:
def trx_count_sum_groupwise(data_filt_partywise):
data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
'MIN_LIMIT', 'PCT_RANGE'])
trxns = data_filt_partywise['transaction_amount'].values
pct_range = data_filt_partywise['PCT_RANGE'].max()
min_value = data_filt_partywise['MIN_LIMIT'].max()
trxns = trxns[trxns >= min_value]
if len(trxns) > 0:
min_value = trxns[0]
group_count = 0
while len(trxns) > 0:
max_value = min_value + (pct_range * 0.01 * min_value)
mask = np.logical_and(trxns >= min_value, trxns <= max_value)
group_filter_trx = trxns[mask]
trx_count = len(group_filter_trx)
trx_sum = np.sum(group_filter_trx)
group_count += 1
groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
min_value, pct_range]
trxns = trxns[trxns > max_value]
if len(trxns) > 0:
min_value = trxns[0]
return groupeddata.to_dict('list')
# ---------------------------
# Function 4: Run scenario 9
# ---------------------------
def scenario9_data(data1):
grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
trx_count_sum_groupwise).reset_index()
df_list = []
for i in grouped.index:
df_party = pd.DataFrame(grouped.iloc[i, -1])
df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
df_list.append(df_party)
final_df = pd.concat(df_list, ignore_index=True)
Segment = final_df.groupby('Focal_id')['Segment'].agg('max').reset_index()
Risk = final_df.groupby('Focal_id')['Risk'].agg('max').reset_index()
SAR_FLAG = final_df.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
return final_df
# In[13]:
from tms_data_interface import SQLQueryInterface
class Scenario:
@ -166,7 +229,12 @@ class Scenario:
]
df = pd.DataFrame(row_list, columns = cols)
df['Segment'] = 'SME'
return df
df['MIN_LIMIT'] = 50000
df['PCT_RANGE'] = 20
scenario_data = scenario9_data(df)
return scenario_data
# In[4]:
@ -175,9 +243,3 @@ class Scenario:
# sen = Scenario()
# sen.logic()
# In[ ]: