generated from user_client2024/78
System save at 23/05/2025 20:44 by user_client2024
This commit is contained in:
parent
cd8cc24134
commit
1fc6a20fff
@ -159,58 +159,58 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"def trx_count_sum_groupwise(data_filt_partywise): \n",
|
"# def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||||
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
"# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||||
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
"# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||||
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
"# 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||||
" \n",
|
" \n",
|
||||||
" trxns = data_filt_partywise['transaction_amount'].values\n",
|
"# trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||||
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
"# pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||||
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
"# min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||||
"\n",
|
"\n",
|
||||||
" trxns = trxns[trxns >= min_value]\n",
|
"# trxns = trxns[trxns >= min_value]\n",
|
||||||
" if len(trxns) > 0:\n",
|
"# if len(trxns) > 0:\n",
|
||||||
" min_value = trxns[0]\n",
|
"# min_value = trxns[0]\n",
|
||||||
"\n",
|
"\n",
|
||||||
" group_count = 0\n",
|
"# group_count = 0\n",
|
||||||
" while len(trxns) > 0:\n",
|
"# while len(trxns) > 0:\n",
|
||||||
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
"# max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||||
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
"# mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||||
" group_filter_trx = trxns[mask]\n",
|
"# group_filter_trx = trxns[mask]\n",
|
||||||
" trx_count = len(group_filter_trx)\n",
|
"# trx_count = len(group_filter_trx)\n",
|
||||||
" trx_sum = np.sum(group_filter_trx)\n",
|
"# trx_sum = np.sum(group_filter_trx)\n",
|
||||||
" group_count += 1\n",
|
"# group_count += 1\n",
|
||||||
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
"# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||||
" min_value, pct_range]\n",
|
"# min_value, pct_range]\n",
|
||||||
" trxns = trxns[trxns > max_value]\n",
|
"# trxns = trxns[trxns > max_value]\n",
|
||||||
" if len(trxns) > 0:\n",
|
"# if len(trxns) > 0:\n",
|
||||||
" min_value = trxns[0]\n",
|
"# min_value = trxns[0]\n",
|
||||||
"\n",
|
"\n",
|
||||||
" return groupeddata.to_dict('list')\n",
|
"# return groupeddata.to_dict('list')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# ---------------------------\n",
|
"# # ---------------------------\n",
|
||||||
"# Function 4: Run scenario 9\n",
|
"# # Function 4: Run scenario 9\n",
|
||||||
"# ---------------------------\n",
|
"# # ---------------------------\n",
|
||||||
"def scenario9_data(data1): \n",
|
"# def scenario9_data(data1): \n",
|
||||||
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
"# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||||
" trx_count_sum_groupwise).reset_index()\n",
|
"# trx_count_sum_groupwise).reset_index()\n",
|
||||||
"\n",
|
"\n",
|
||||||
" df_list = []\n",
|
"# df_list = []\n",
|
||||||
" for i in grouped.index:\n",
|
"# for i in grouped.index:\n",
|
||||||
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
"# df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||||
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
"# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||||
" df_list.append(df_party)\n",
|
"# df_list.append(df_party)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" final_df = pd.concat(df_list, ignore_index=True) \n",
|
"# final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||||
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
"# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||||
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
"# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||||
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
"# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||||
" \n",
|
" \n",
|
||||||
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||||
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||||
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||||
" \n",
|
" \n",
|
||||||
" return final_df\n",
|
"# return final_df\n",
|
||||||
" "
|
" "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -253,10 +253,10 @@
|
|||||||
" ]\n",
|
" ]\n",
|
||||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||||
" df['Segment'] = 'SME'\n",
|
" df['Segment'] = 'SME'\n",
|
||||||
" df['MIN_LIMIT'] = 50000\n",
|
"# df['MIN_LIMIT'] = 50000\n",
|
||||||
" df['PCT_RANGE'] = 20\n",
|
"# df['PCT_RANGE'] = 20\n",
|
||||||
" \n",
|
" \n",
|
||||||
" scenario_data = scenario9_data(df)\n",
|
"# scenario_data = scenario9_data(df)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" return scenario_data"
|
" return scenario_data"
|
||||||
]
|
]
|
||||||
|
|||||||
92
main.ipynb
92
main.ipynb
@ -159,58 +159,58 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"def trx_count_sum_groupwise(data_filt_partywise): \n",
|
"# def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||||
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
"# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||||
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
"# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||||
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
"# 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||||
" \n",
|
" \n",
|
||||||
" trxns = data_filt_partywise['transaction_amount'].values\n",
|
"# trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||||
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
"# pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||||
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
"# min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||||
"\n",
|
"\n",
|
||||||
" trxns = trxns[trxns >= min_value]\n",
|
"# trxns = trxns[trxns >= min_value]\n",
|
||||||
" if len(trxns) > 0:\n",
|
"# if len(trxns) > 0:\n",
|
||||||
" min_value = trxns[0]\n",
|
"# min_value = trxns[0]\n",
|
||||||
"\n",
|
"\n",
|
||||||
" group_count = 0\n",
|
"# group_count = 0\n",
|
||||||
" while len(trxns) > 0:\n",
|
"# while len(trxns) > 0:\n",
|
||||||
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
"# max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||||
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
"# mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||||
" group_filter_trx = trxns[mask]\n",
|
"# group_filter_trx = trxns[mask]\n",
|
||||||
" trx_count = len(group_filter_trx)\n",
|
"# trx_count = len(group_filter_trx)\n",
|
||||||
" trx_sum = np.sum(group_filter_trx)\n",
|
"# trx_sum = np.sum(group_filter_trx)\n",
|
||||||
" group_count += 1\n",
|
"# group_count += 1\n",
|
||||||
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
"# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||||
" min_value, pct_range]\n",
|
"# min_value, pct_range]\n",
|
||||||
" trxns = trxns[trxns > max_value]\n",
|
"# trxns = trxns[trxns > max_value]\n",
|
||||||
" if len(trxns) > 0:\n",
|
"# if len(trxns) > 0:\n",
|
||||||
" min_value = trxns[0]\n",
|
"# min_value = trxns[0]\n",
|
||||||
"\n",
|
"\n",
|
||||||
" return groupeddata.to_dict('list')\n",
|
"# return groupeddata.to_dict('list')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# ---------------------------\n",
|
"# # ---------------------------\n",
|
||||||
"# Function 4: Run scenario 9\n",
|
"# # Function 4: Run scenario 9\n",
|
||||||
"# ---------------------------\n",
|
"# # ---------------------------\n",
|
||||||
"def scenario9_data(data1): \n",
|
"# def scenario9_data(data1): \n",
|
||||||
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
"# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||||
" trx_count_sum_groupwise).reset_index()\n",
|
"# trx_count_sum_groupwise).reset_index()\n",
|
||||||
"\n",
|
"\n",
|
||||||
" df_list = []\n",
|
"# df_list = []\n",
|
||||||
" for i in grouped.index:\n",
|
"# for i in grouped.index:\n",
|
||||||
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
"# df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||||
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
"# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||||
" df_list.append(df_party)\n",
|
"# df_list.append(df_party)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" final_df = pd.concat(df_list, ignore_index=True) \n",
|
"# final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||||
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
"# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||||
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
"# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||||
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
"# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||||
" \n",
|
" \n",
|
||||||
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||||
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||||
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
"# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||||
" \n",
|
" \n",
|
||||||
" return final_df\n",
|
"# return final_df\n",
|
||||||
" "
|
" "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -253,10 +253,10 @@
|
|||||||
" ]\n",
|
" ]\n",
|
||||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||||
" df['Segment'] = 'SME'\n",
|
" df['Segment'] = 'SME'\n",
|
||||||
" df['MIN_LIMIT'] = 50000\n",
|
"# df['MIN_LIMIT'] = 50000\n",
|
||||||
" df['PCT_RANGE'] = 20\n",
|
"# df['PCT_RANGE'] = 20\n",
|
||||||
" \n",
|
" \n",
|
||||||
" scenario_data = scenario9_data(df)\n",
|
"# scenario_data = scenario9_data(df)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" return scenario_data"
|
" return scenario_data"
|
||||||
]
|
]
|
||||||
|
|||||||
92
main.py
92
main.py
@ -142,58 +142,58 @@ query = """
|
|||||||
# In[20]:
|
# In[20]:
|
||||||
|
|
||||||
|
|
||||||
def trx_count_sum_groupwise(data_filt_partywise):
|
# def trx_count_sum_groupwise(data_filt_partywise):
|
||||||
data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
|
# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
|
||||||
groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
|
# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
|
||||||
'MIN_LIMIT', 'PCT_RANGE'])
|
# 'MIN_LIMIT', 'PCT_RANGE'])
|
||||||
|
|
||||||
trxns = data_filt_partywise['transaction_amount'].values
|
# trxns = data_filt_partywise['transaction_amount'].values
|
||||||
pct_range = data_filt_partywise['PCT_RANGE'].max()
|
# pct_range = data_filt_partywise['PCT_RANGE'].max()
|
||||||
min_value = data_filt_partywise['MIN_LIMIT'].max()
|
# min_value = data_filt_partywise['MIN_LIMIT'].max()
|
||||||
|
|
||||||
trxns = trxns[trxns >= min_value]
|
# trxns = trxns[trxns >= min_value]
|
||||||
if len(trxns) > 0:
|
# if len(trxns) > 0:
|
||||||
min_value = trxns[0]
|
# min_value = trxns[0]
|
||||||
|
|
||||||
group_count = 0
|
# group_count = 0
|
||||||
while len(trxns) > 0:
|
# while len(trxns) > 0:
|
||||||
max_value = min_value + (pct_range * 0.01 * min_value)
|
# max_value = min_value + (pct_range * 0.01 * min_value)
|
||||||
mask = np.logical_and(trxns >= min_value, trxns <= max_value)
|
# mask = np.logical_and(trxns >= min_value, trxns <= max_value)
|
||||||
group_filter_trx = trxns[mask]
|
# group_filter_trx = trxns[mask]
|
||||||
trx_count = len(group_filter_trx)
|
# trx_count = len(group_filter_trx)
|
||||||
trx_sum = np.sum(group_filter_trx)
|
# trx_sum = np.sum(group_filter_trx)
|
||||||
group_count += 1
|
# group_count += 1
|
||||||
groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
|
# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
|
||||||
min_value, pct_range]
|
# min_value, pct_range]
|
||||||
trxns = trxns[trxns > max_value]
|
# trxns = trxns[trxns > max_value]
|
||||||
if len(trxns) > 0:
|
# if len(trxns) > 0:
|
||||||
min_value = trxns[0]
|
# min_value = trxns[0]
|
||||||
|
|
||||||
return groupeddata.to_dict('list')
|
# return groupeddata.to_dict('list')
|
||||||
|
|
||||||
# ---------------------------
|
# # ---------------------------
|
||||||
# Function 4: Run scenario 9
|
# # Function 4: Run scenario 9
|
||||||
# ---------------------------
|
# # ---------------------------
|
||||||
def scenario9_data(data1):
|
# def scenario9_data(data1):
|
||||||
grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
|
# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
|
||||||
trx_count_sum_groupwise).reset_index()
|
# trx_count_sum_groupwise).reset_index()
|
||||||
|
|
||||||
df_list = []
|
# df_list = []
|
||||||
for i in grouped.index:
|
# for i in grouped.index:
|
||||||
df_party = pd.DataFrame(grouped.iloc[i, -1])
|
# df_party = pd.DataFrame(grouped.iloc[i, -1])
|
||||||
df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
|
# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
|
||||||
df_list.append(df_party)
|
# df_list.append(df_party)
|
||||||
|
|
||||||
final_df = pd.concat(df_list, ignore_index=True)
|
# final_df = pd.concat(df_list, ignore_index=True)
|
||||||
Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
|
# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
|
||||||
Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
|
# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
|
||||||
SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
|
# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
|
||||||
|
|
||||||
final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
|
# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
|
||||||
final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
|
# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
|
||||||
final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
|
# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
|
||||||
|
|
||||||
return final_df
|
# return final_df
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -229,10 +229,10 @@ class Scenario:
|
|||||||
]
|
]
|
||||||
df = pd.DataFrame(row_list, columns = cols)
|
df = pd.DataFrame(row_list, columns = cols)
|
||||||
df['Segment'] = 'SME'
|
df['Segment'] = 'SME'
|
||||||
df['MIN_LIMIT'] = 50000
|
# df['MIN_LIMIT'] = 50000
|
||||||
df['PCT_RANGE'] = 20
|
# df['PCT_RANGE'] = 20
|
||||||
|
|
||||||
scenario_data = scenario9_data(df)
|
# scenario_data = scenario9_data(df)
|
||||||
|
|
||||||
return scenario_data
|
return scenario_data
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user