generated from user_client2024/78
System save at 23/05/2025 20:44 by user_client2024
This commit is contained in:
parent
cd8cc24134
commit
1fc6a20fff
@ -159,58 +159,58 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||
"# def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||
"# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||
"# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||
"# 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||
" \n",
|
||||
" trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||
"# trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||
"# pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||
"# min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||
"\n",
|
||||
" trxns = trxns[trxns >= min_value]\n",
|
||||
" if len(trxns) > 0:\n",
|
||||
" min_value = trxns[0]\n",
|
||||
"# trxns = trxns[trxns >= min_value]\n",
|
||||
"# if len(trxns) > 0:\n",
|
||||
"# min_value = trxns[0]\n",
|
||||
"\n",
|
||||
" group_count = 0\n",
|
||||
" while len(trxns) > 0:\n",
|
||||
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||
" group_filter_trx = trxns[mask]\n",
|
||||
" trx_count = len(group_filter_trx)\n",
|
||||
" trx_sum = np.sum(group_filter_trx)\n",
|
||||
" group_count += 1\n",
|
||||
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||
" min_value, pct_range]\n",
|
||||
" trxns = trxns[trxns > max_value]\n",
|
||||
" if len(trxns) > 0:\n",
|
||||
" min_value = trxns[0]\n",
|
||||
"# group_count = 0\n",
|
||||
"# while len(trxns) > 0:\n",
|
||||
"# max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||
"# mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||
"# group_filter_trx = trxns[mask]\n",
|
||||
"# trx_count = len(group_filter_trx)\n",
|
||||
"# trx_sum = np.sum(group_filter_trx)\n",
|
||||
"# group_count += 1\n",
|
||||
"# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||
"# min_value, pct_range]\n",
|
||||
"# trxns = trxns[trxns > max_value]\n",
|
||||
"# if len(trxns) > 0:\n",
|
||||
"# min_value = trxns[0]\n",
|
||||
"\n",
|
||||
" return groupeddata.to_dict('list')\n",
|
||||
"# return groupeddata.to_dict('list')\n",
|
||||
"\n",
|
||||
"# ---------------------------\n",
|
||||
"# Function 4: Run scenario 9\n",
|
||||
"# ---------------------------\n",
|
||||
"def scenario9_data(data1): \n",
|
||||
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||
" trx_count_sum_groupwise).reset_index()\n",
|
||||
"# # ---------------------------\n",
|
||||
"# # Function 4: Run scenario 9\n",
|
||||
"# # ---------------------------\n",
|
||||
"# def scenario9_data(data1): \n",
|
||||
"# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||
"# trx_count_sum_groupwise).reset_index()\n",
|
||||
"\n",
|
||||
" df_list = []\n",
|
||||
" for i in grouped.index:\n",
|
||||
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||
" df_list.append(df_party)\n",
|
||||
"# df_list = []\n",
|
||||
"# for i in grouped.index:\n",
|
||||
"# df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||
"# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||
"# df_list.append(df_party)\n",
|
||||
"\n",
|
||||
" final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||
"# final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||
"# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||
"# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||
"# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||
" \n",
|
||||
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||
" \n",
|
||||
" return final_df\n",
|
||||
"# return final_df\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
@ -253,10 +253,10 @@
|
||||
" ]\n",
|
||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" df['Segment'] = 'SME'\n",
|
||||
" df['MIN_LIMIT'] = 50000\n",
|
||||
" df['PCT_RANGE'] = 20\n",
|
||||
"# df['MIN_LIMIT'] = 50000\n",
|
||||
"# df['PCT_RANGE'] = 20\n",
|
||||
" \n",
|
||||
" scenario_data = scenario9_data(df)\n",
|
||||
"# scenario_data = scenario9_data(df)\n",
|
||||
" \n",
|
||||
" return scenario_data"
|
||||
]
|
||||
|
||||
92
main.ipynb
92
main.ipynb
@ -159,58 +159,58 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||
" data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||
" groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||
" 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||
"# def trx_count_sum_groupwise(data_filt_partywise): \n",
|
||||
"# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount') \n",
|
||||
"# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt', \n",
|
||||
"# 'MIN_LIMIT', 'PCT_RANGE'])\n",
|
||||
" \n",
|
||||
" trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||
" pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||
" min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||
"# trxns = data_filt_partywise['transaction_amount'].values\n",
|
||||
"# pct_range = data_filt_partywise['PCT_RANGE'].max()\n",
|
||||
"# min_value = data_filt_partywise['MIN_LIMIT'].max()\n",
|
||||
"\n",
|
||||
" trxns = trxns[trxns >= min_value]\n",
|
||||
" if len(trxns) > 0:\n",
|
||||
" min_value = trxns[0]\n",
|
||||
"# trxns = trxns[trxns >= min_value]\n",
|
||||
"# if len(trxns) > 0:\n",
|
||||
"# min_value = trxns[0]\n",
|
||||
"\n",
|
||||
" group_count = 0\n",
|
||||
" while len(trxns) > 0:\n",
|
||||
" max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||
" mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||
" group_filter_trx = trxns[mask]\n",
|
||||
" trx_count = len(group_filter_trx)\n",
|
||||
" trx_sum = np.sum(group_filter_trx)\n",
|
||||
" group_count += 1\n",
|
||||
" groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||
" min_value, pct_range]\n",
|
||||
" trxns = trxns[trxns > max_value]\n",
|
||||
" if len(trxns) > 0:\n",
|
||||
" min_value = trxns[0]\n",
|
||||
"# group_count = 0\n",
|
||||
"# while len(trxns) > 0:\n",
|
||||
"# max_value = min_value + (pct_range * 0.01 * min_value)\n",
|
||||
"# mask = np.logical_and(trxns >= min_value, trxns <= max_value)\n",
|
||||
"# group_filter_trx = trxns[mask]\n",
|
||||
"# trx_count = len(group_filter_trx)\n",
|
||||
"# trx_sum = np.sum(group_filter_trx)\n",
|
||||
"# group_count += 1\n",
|
||||
"# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum, \n",
|
||||
"# min_value, pct_range]\n",
|
||||
"# trxns = trxns[trxns > max_value]\n",
|
||||
"# if len(trxns) > 0:\n",
|
||||
"# min_value = trxns[0]\n",
|
||||
"\n",
|
||||
" return groupeddata.to_dict('list')\n",
|
||||
"# return groupeddata.to_dict('list')\n",
|
||||
"\n",
|
||||
"# ---------------------------\n",
|
||||
"# Function 4: Run scenario 9\n",
|
||||
"# ---------------------------\n",
|
||||
"def scenario9_data(data1): \n",
|
||||
" grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||
" trx_count_sum_groupwise).reset_index()\n",
|
||||
"# # ---------------------------\n",
|
||||
"# # Function 4: Run scenario 9\n",
|
||||
"# # ---------------------------\n",
|
||||
"# def scenario9_data(data1): \n",
|
||||
"# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(\n",
|
||||
"# trx_count_sum_groupwise).reset_index()\n",
|
||||
"\n",
|
||||
" df_list = []\n",
|
||||
" for i in grouped.index:\n",
|
||||
" df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||
" df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||
" df_list.append(df_party)\n",
|
||||
"# df_list = []\n",
|
||||
"# for i in grouped.index:\n",
|
||||
"# df_party = pd.DataFrame(grouped.iloc[i, -1])\n",
|
||||
"# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']\n",
|
||||
"# df_list.append(df_party)\n",
|
||||
"\n",
|
||||
" final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||
" Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||
" Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||
" SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||
"# final_df = pd.concat(df_list, ignore_index=True) \n",
|
||||
"# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()\n",
|
||||
"# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()\n",
|
||||
"# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()\n",
|
||||
" \n",
|
||||
" final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||
" final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||
" final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')\n",
|
||||
"# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')\n",
|
||||
" \n",
|
||||
" return final_df\n",
|
||||
"# return final_df\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
@ -253,10 +253,10 @@
|
||||
" ]\n",
|
||||
" df = pd.DataFrame(row_list, columns = cols)\n",
|
||||
" df['Segment'] = 'SME'\n",
|
||||
" df['MIN_LIMIT'] = 50000\n",
|
||||
" df['PCT_RANGE'] = 20\n",
|
||||
"# df['MIN_LIMIT'] = 50000\n",
|
||||
"# df['PCT_RANGE'] = 20\n",
|
||||
" \n",
|
||||
" scenario_data = scenario9_data(df)\n",
|
||||
"# scenario_data = scenario9_data(df)\n",
|
||||
" \n",
|
||||
" return scenario_data"
|
||||
]
|
||||
|
||||
92
main.py
92
main.py
@ -142,58 +142,58 @@ query = """
|
||||
# In[20]:
|
||||
|
||||
|
||||
def trx_count_sum_groupwise(data_filt_partywise):
|
||||
data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
|
||||
groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
|
||||
'MIN_LIMIT', 'PCT_RANGE'])
|
||||
# def trx_count_sum_groupwise(data_filt_partywise):
|
||||
# data_filt_partywise = data_filt_partywise.sort_values(by='transaction_amount')
|
||||
# groupeddata = pd.DataFrame(columns=['group_no', 'trxn_cnt', 'trxn_sum_amt',
|
||||
# 'MIN_LIMIT', 'PCT_RANGE'])
|
||||
|
||||
trxns = data_filt_partywise['transaction_amount'].values
|
||||
pct_range = data_filt_partywise['PCT_RANGE'].max()
|
||||
min_value = data_filt_partywise['MIN_LIMIT'].max()
|
||||
# trxns = data_filt_partywise['transaction_amount'].values
|
||||
# pct_range = data_filt_partywise['PCT_RANGE'].max()
|
||||
# min_value = data_filt_partywise['MIN_LIMIT'].max()
|
||||
|
||||
trxns = trxns[trxns >= min_value]
|
||||
if len(trxns) > 0:
|
||||
min_value = trxns[0]
|
||||
# trxns = trxns[trxns >= min_value]
|
||||
# if len(trxns) > 0:
|
||||
# min_value = trxns[0]
|
||||
|
||||
group_count = 0
|
||||
while len(trxns) > 0:
|
||||
max_value = min_value + (pct_range * 0.01 * min_value)
|
||||
mask = np.logical_and(trxns >= min_value, trxns <= max_value)
|
||||
group_filter_trx = trxns[mask]
|
||||
trx_count = len(group_filter_trx)
|
||||
trx_sum = np.sum(group_filter_trx)
|
||||
group_count += 1
|
||||
groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
|
||||
min_value, pct_range]
|
||||
trxns = trxns[trxns > max_value]
|
||||
if len(trxns) > 0:
|
||||
min_value = trxns[0]
|
||||
# group_count = 0
|
||||
# while len(trxns) > 0:
|
||||
# max_value = min_value + (pct_range * 0.01 * min_value)
|
||||
# mask = np.logical_and(trxns >= min_value, trxns <= max_value)
|
||||
# group_filter_trx = trxns[mask]
|
||||
# trx_count = len(group_filter_trx)
|
||||
# trx_sum = np.sum(group_filter_trx)
|
||||
# group_count += 1
|
||||
# groupeddata.loc[len(groupeddata)] = [group_count, trx_count, trx_sum,
|
||||
# min_value, pct_range]
|
||||
# trxns = trxns[trxns > max_value]
|
||||
# if len(trxns) > 0:
|
||||
# min_value = trxns[0]
|
||||
|
||||
return groupeddata.to_dict('list')
|
||||
# return groupeddata.to_dict('list')
|
||||
|
||||
# ---------------------------
|
||||
# Function 4: Run scenario 9
|
||||
# ---------------------------
|
||||
def scenario9_data(data1):
|
||||
grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
|
||||
trx_count_sum_groupwise).reset_index()
|
||||
# # ---------------------------
|
||||
# # Function 4: Run scenario 9
|
||||
# # ---------------------------
|
||||
# def scenario9_data(data1):
|
||||
# grouped = data1.groupby('Focal_id')[['transaction_amount', 'MIN_LIMIT', 'PCT_RANGE']].apply(
|
||||
# trx_count_sum_groupwise).reset_index()
|
||||
|
||||
df_list = []
|
||||
for i in grouped.index:
|
||||
df_party = pd.DataFrame(grouped.iloc[i, -1])
|
||||
df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
|
||||
df_list.append(df_party)
|
||||
# df_list = []
|
||||
# for i in grouped.index:
|
||||
# df_party = pd.DataFrame(grouped.iloc[i, -1])
|
||||
# df_party['Focal_id'] = grouped.loc[i, 'Focal_id']
|
||||
# df_list.append(df_party)
|
||||
|
||||
final_df = pd.concat(df_list, ignore_index=True)
|
||||
Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
|
||||
Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
|
||||
SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
|
||||
# final_df = pd.concat(df_list, ignore_index=True)
|
||||
# Segment = data1.groupby('Focal_id')['Segment'].agg('max').reset_index()
|
||||
# Risk = data1.groupby('Focal_id')['Risk'].agg('max').reset_index()
|
||||
# SAR_FLAG = data1.groupby('Focal_id')['SAR_FLAG'].agg('max').reset_index()
|
||||
|
||||
final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
|
||||
final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
|
||||
final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
|
||||
# final_df = final_df.merge(Segment,on = 'Focal_id', how = 'left')
|
||||
# final_df = final_df.merge(Risk,on = 'Focal_id', how = 'left')
|
||||
# final_df = final_df.merge(SAR_FLAG,on = 'Focal_id', how = 'left')
|
||||
|
||||
return final_df
|
||||
# return final_df
|
||||
|
||||
|
||||
|
||||
@ -229,10 +229,10 @@ class Scenario:
|
||||
]
|
||||
df = pd.DataFrame(row_list, columns = cols)
|
||||
df['Segment'] = 'SME'
|
||||
df['MIN_LIMIT'] = 50000
|
||||
df['PCT_RANGE'] = 20
|
||||
# df['MIN_LIMIT'] = 50000
|
||||
# df['PCT_RANGE'] = 20
|
||||
|
||||
scenario_data = scenario9_data(df)
|
||||
# scenario_data = scenario9_data(df)
|
||||
|
||||
return scenario_data
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user